Nuprl Lemma : compact-dCCC

K:Type. (K  compact-type(K)  dCCC(K))


Proof




Definitions occuring in Statement :  compact-type: compact-type(T) contra-dcc: dCCC(T) all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q contra-dcc: dCCC(T) compact-type: compact-type(T) member: t ∈ T or: P ∨ Q exists: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a sq_type: SQType(T) guard: {T} not: ¬A false: False prop: so_lambda: λ2x.t[x] so_apply: x[s] pi1: fst(t)
Lemmas referenced :  subtype_base_sq bool_wf bool_subtype_base assert_of_ff istype-assert istype-void assert_of_tt istype-nat compact-type_wf istype-universe nat_wf pi1_wf not_wf assert_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalHypSubstitution dependent_functionElimination thin lambdaEquality_alt applyEquality hypothesisEquality inhabitedIsType sqequalRule unionElimination inlFormation_alt productElimination dependent_pairFormation_alt instantiate introduction extract_by_obid isectElimination cumulativity hypothesis independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination functionIsType because_Cache inrFormation_alt productIsType rename universeIsType universeEquality functionExtensionality dependent_pairEquality_alt equalityIstype voidElimination

Latex:
\mforall{}K:Type.  (K  {}\mRightarrow{}  compact-type(K)  {}\mRightarrow{}  dCCC(K))



Date html generated: 2019_10_15-AM-10_47_09
Last ObjectModification: 2019_06_20-AM-11_02_07

Theory : basic


Home Index