Nuprl Lemma : compact-dCCC
∀K:Type. (K 
⇒ compact-type(K) 
⇒ dCCC(K))
Proof
Definitions occuring in Statement : 
compact-type: compact-type(T)
, 
contra-dcc: dCCC(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
contra-dcc: dCCC(T)
, 
compact-type: compact-type(T)
, 
member: t ∈ T
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
pi1: fst(t)
Lemmas referenced : 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert_of_ff, 
istype-assert, 
istype-void, 
assert_of_tt, 
istype-nat, 
compact-type_wf, 
istype-universe, 
nat_wf, 
pi1_wf, 
not_wf, 
assert_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
lambdaEquality_alt, 
applyEquality, 
hypothesisEquality, 
inhabitedIsType, 
sqequalRule, 
unionElimination, 
inlFormation_alt, 
productElimination, 
dependent_pairFormation_alt, 
instantiate, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesis, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
functionIsType, 
because_Cache, 
inrFormation_alt, 
productIsType, 
rename, 
universeIsType, 
universeEquality, 
functionExtensionality, 
dependent_pairEquality_alt, 
equalityIstype, 
voidElimination
Latex:
\mforall{}K:Type.  (K  {}\mRightarrow{}  compact-type(K)  {}\mRightarrow{}  dCCC(K))
Date html generated:
2019_10_15-AM-10_47_09
Last ObjectModification:
2019_06_20-AM-11_02_07
Theory : basic
Home
Index