Nuprl Lemma : type-functor_wf

Functor ∈ 𝕌'


Proof




Definitions occuring in Statement :  type-functor: Functor member: t ∈ T universe: Type
Definitions unfolded in proof :  type-functor: Functor member: t ∈ T subtype_rel: A ⊆B and: P ∧ Q uall: [x:A]. B[x] so_lambda: λ2x.t[x] all: x:A. B[x] implies:  Q prop: so_apply: x[s] uimplies: supposing a exists: x:A. B[x]
Lemmas referenced :  all_wf equal-wf-T-base equal_wf compose_wf isect_subtype_rel_trivial subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep setEquality productEquality functionEquality universeEquality isectEquality because_Cache cumulativity hypothesisEquality cut applyEquality functionExtensionality hypothesis thin lambdaEquality sqequalHypSubstitution productElimination instantiate introduction extract_by_obid isectElimination isect_memberEquality equalityTransitivity equalitySymmetry lambdaFormation dependent_functionElimination independent_functionElimination baseClosed independent_isectElimination dependent_pairFormation

Latex:
Functor  \mmember{}  \mBbbU{}'



Date html generated: 2017_10_01-AM-08_28_35
Last ObjectModification: 2017_07_26-PM-04_23_35

Theory : basic


Home Index