Nuprl Lemma : dl-localF_wf
localF ∈ ∀x:dl-Obj(). (Prop List)
Proof
Definitions occuring in Statement : 
dl-localF: localF
, 
dl-prop: Prop
, 
dl-Obj: dl-Obj()
, 
list: T List
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
dl-localF: localF
, 
append: as @ bs
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda3, 
member: t ∈ T
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
so_lambda: so_lambda4, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
list_ind_cons_lemma, 
istype-void, 
list_ind_nil_lemma, 
dl-ind_wf, 
list_wf, 
dl-prop_wf, 
subtype-TYPE, 
dl-Obj_wf, 
nil_wf, 
istype-nat, 
dl-prog_wf, 
cons_wf, 
dl-aprop_wf, 
dl-false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
isectElimination, 
lambdaEquality_alt, 
applyEquality, 
universeIsType, 
inhabitedIsType, 
hypothesisEquality, 
because_Cache
Latex:
localF  \mmember{}  \mforall{}x:dl-Obj().  (Prop  List)
Date html generated:
2020_05_20-AM-09_01_59
Last ObjectModification:
2019_11_27-PM-02_27_58
Theory : dynamic!logic
Home
Index