Nuprl Lemma : dl-valid-box-distibute-implies

a:Prog. ∀phi,psi:Prop.  (|= [a] phi  psi  |= [a] phi  [a] psi)


Proof




Definitions occuring in Statement :  dl-valid: |= phi dl-box: [x1] x dl-implies: x1  x dl-prop: Prop dl-prog: Prog all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q dl-valid: |= phi member: t ∈ T dl-prop-sem: [|phi|] dl-sem: dl-sem(K;n.R[n];m.P[m]) uall: [x:A]. B[x] so_lambda: λ2x.t[x] top: Top so_apply: x[s] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] dl-prog-sem: [|alpha|] subtype_rel: A ⊆B prop: guard: {T}
Lemmas referenced :  istype-void dl-prog-sem_wf istype-atom subtype_rel_self dl-prop-sem_wf istype-universe dl-valid_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution cut hypothesis dependent_functionElimination thin hypothesisEquality sqequalRule introduction extract_by_obid isectElimination isect_memberEquality_alt voidElimination universeIsType applyEquality lambdaEquality_alt because_Cache functionIsType instantiate universeEquality inhabitedIsType independent_functionElimination

Latex:
\mforall{}a:Prog.  \mforall{}phi,psi:Prop.    (|=  [a]  phi  {}\mRightarrow{}  psi  {}\mRightarrow{}  |=  [a]  phi  {}\mRightarrow{}  [a]  psi)



Date html generated: 2019_10_15-AM-11_45_10
Last ObjectModification: 2019_03_26-AM-11_28_39

Theory : dynamic!logic


Home Index