Nuprl Lemma : dl-valid-diamond-dist-or2
∀a:Prog. ∀phi,psi:Prop.  (|= <a> phi ∨ <a> psi 
⇒ |= <a> phi ∨ psi)
Proof
Definitions occuring in Statement : 
dl-valid: |= phi
, 
dl-diamond: <x1> x
, 
dl-or: x1 ∨ x
, 
dl-prop: Prop
, 
dl-prog: Prog
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
dl-valid: |= phi
, 
dl-prop-sem: [|phi|]
, 
dl-sem: dl-sem(K;n.R[n];m.P[m])
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
top: Top
, 
so_apply: x[s]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
dl-prog-sem: [|alpha|]
, 
prop: ℙ
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
istype-void, 
istype-atom, 
istype-universe, 
dl-valid_wf, 
dl-prop-sem_wf, 
subtype_rel_self, 
dl-prog-sem_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
universeIsType, 
functionIsType, 
universeEquality, 
because_Cache, 
instantiate, 
inhabitedIsType, 
unionElimination, 
productElimination, 
dependent_pairFormation_alt, 
independent_pairFormation, 
inlFormation_alt, 
applyEquality, 
lambdaEquality_alt, 
productIsType, 
unionIsType, 
inrFormation_alt
Latex:
\mforall{}a:Prog.  \mforall{}phi,psi:Prop.    (|=  <a>  phi  \mvee{}  <a>  psi  {}\mRightarrow{}  |=  <a>  phi  \mvee{}  psi)
Date html generated:
2019_10_15-AM-11_44_57
Last ObjectModification:
2019_03_26-AM-11_28_34
Theory : dynamic!logic
Home
Index