Nuprl Lemma : co-list-islist-induction1
∀[A:Type]. ∀[P:co-list-islist(A) ⟶ ℙ].
  (P[conil()] 
⇒ (∀L:co-list-islist(A). ∀a:A.  (P[L] 
⇒ P[cocons(a;L)])) 
⇒ (∀L:co-list-islist(A). P[L]))
Proof
Definitions occuring in Statement : 
cocons: cocons(a;L)
, 
conil: conil()
, 
co-list-islist: co-list-islist(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
co-list-islist_wf, 
all_wf, 
cocons_wf, 
conil_wf, 
list_ind-wf-co-list-islist2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
applyEquality, 
cumulativity, 
universeEquality, 
rename, 
introduction
Latex:
\mforall{}[A:Type].  \mforall{}[P:co-list-islist(A)  {}\mrightarrow{}  \mBbbP{}].
    (P[conil()]
    {}\mRightarrow{}  (\mforall{}L:co-list-islist(A).  \mforall{}a:A.    (P[L]  {}\mRightarrow{}  P[cocons(a;L)]))
    {}\mRightarrow{}  (\mforall{}L:co-list-islist(A).  P[L]))
Date html generated:
2016_05_15-PM-10_11_11
Last ObjectModification:
2015_12_27-PM-05_58_42
Theory : eval!all
Home
Index