Nuprl Lemma : co-list-islist-induction1

[A:Type]. ∀[P:co-list-islist(A) ⟶ ℙ].
  (P[conil()]  (∀L:co-list-islist(A). ∀a:A.  (P[L]  P[cocons(a;L)]))  (∀L:co-list-islist(A). P[L]))


Proof




Definitions occuring in Statement :  cocons: cocons(a;L) conil: conil() co-list-islist: co-list-islist(T) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: so_lambda(x,y,z.t[x; y; z]) subtype_rel: A ⊆B so_apply: x[s1;s2;s3]
Lemmas referenced :  co-list-islist_wf all_wf cocons_wf conil_wf list_ind-wf-co-list-islist2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality functionEquality applyEquality cumulativity universeEquality rename introduction

Latex:
\mforall{}[A:Type].  \mforall{}[P:co-list-islist(A)  {}\mrightarrow{}  \mBbbP{}].
    (P[conil()]
    {}\mRightarrow{}  (\mforall{}L:co-list-islist(A).  \mforall{}a:A.    (P[L]  {}\mRightarrow{}  P[cocons(a;L)]))
    {}\mRightarrow{}  (\mforall{}L:co-list-islist(A).  P[L]))



Date html generated: 2016_05_15-PM-10_11_11
Last ObjectModification: 2015_12_27-PM-05_58_42

Theory : eval!all


Home Index