Nuprl Lemma : list_ind-wf-co-list-islist2
∀[A:Type]. ∀[B:co-list-islist(A) ⟶ Type]. ∀[L:co-list-islist(A)]. ∀[x:B[conil()]]. ∀[F:a:A
                                                                                        ⟶ L:co-list-islist(A)
                                                                                        ⟶ B[L]
                                                                                        ⟶ B[cocons(a;L)]].
  (rec-case(L) of
   [] => x
   h::t =>
    r.F[h;t;r] ∈ B[L])
Proof
Definitions occuring in Statement : 
cocons: cocons(a;L)
, 
conil: conil()
, 
co-list-islist: co-list-islist(T)
, 
list_ind: list_ind, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2;s3]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
nil: []
, 
it: ⋅
, 
conil: conil()
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
cons: [a / b]
, 
cocons: cocons(a;L)
, 
implies: P 
⇒ Q
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
co-list-islist-ext-list, 
list_ind-general-wf, 
subtype_rel_dep_function, 
co-list-islist_wf, 
list_wf, 
ext-eq_inversion, 
subtype_rel_weakening, 
cocons_wf, 
conil_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
applyEquality, 
instantiate, 
cumulativity, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
universeEquality, 
independent_isectElimination, 
lambdaFormation, 
functionEquality, 
isect_memberFormation, 
introduction, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:co-list-islist(A)  {}\mrightarrow{}  Type].  \mforall{}[L:co-list-islist(A)].  \mforall{}[x:B[conil()]].
\mforall{}[F:a:A  {}\mrightarrow{}  L:co-list-islist(A)  {}\mrightarrow{}  B[L]  {}\mrightarrow{}  B[cocons(a;L)]].
    (rec-case(L)  of
      []  =>  x
      h::t  =>
        r.F[h;t;r]  \mmember{}  B[L])
Date html generated:
2016_05_15-PM-10_11_08
Last ObjectModification:
2015_12_27-PM-05_58_45
Theory : eval!all
Home
Index