Nuprl Lemma : colist-unfold_wf

[A,B:Type]. ∀[P:B ⟶ (Unit (A × B))]. ∀[x:B].  (colist-unfold(P;x) ∈ colist(A))


Proof




Definitions occuring in Statement :  colist-unfold: colist-unfold(P;x) colist: colist(T) uall: [x:A]. B[x] unit: Unit member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T colist-unfold: colist-unfold(P;x) colist: colist(T) so_lambda: λ2x.t[x] so_apply: x[s] cons: [a b] nil: [] isect2: T1 ⋂ T2 bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  top: Top bfalse: ff all: x:A. B[x] implies:  Q subtype_rel: A ⊆B prop:
Lemmas referenced :  unit_wf2 fix_wf_corec_parameter b-union_wf top_wf it_wf subtype_rel_b-union-left subtype_rel_b-union-right equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry hypothesisEquality isect_memberEquality isectElimination thin because_Cache functionEquality cumulativity unionEquality extract_by_obid productEquality universeEquality lambdaEquality unionElimination equalityElimination functionExtensionality voidElimination voidEquality lambdaFormation applyEquality productElimination independent_pairEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[A,B:Type].  \mforall{}[P:B  {}\mrightarrow{}  (Unit  +  (A  \mtimes{}  B))].  \mforall{}[x:B].    (colist-unfold(P;x)  \mmember{}  colist(A))



Date html generated: 2018_05_21-PM-10_20_24
Last ObjectModification: 2017_07_26-PM-06_37_26

Theory : eval!all


Home Index