Nuprl Lemma : length-wf-co-list-islist
∀[T:Type]. ∀[t:co-list-islist(T)].  (||t|| ∈ ℕ)
Proof
Definitions occuring in Statement : 
co-list-islist: co-list-islist(T)
, 
length: ||as||
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
co-list-islist: co-list-islist(T)
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
top: Top
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
Lemmas referenced : 
co-list-islist_wf, 
termination, 
nat_wf, 
set-value-type, 
le_wf, 
int-value-type, 
length-is-colength, 
colength_wf, 
islist-iff-length-has-value
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality, 
independent_isectElimination, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
voidElimination, 
voidEquality, 
productElimination
Latex:
\mforall{}[T:Type].  \mforall{}[t:co-list-islist(T)].    (||t||  \mmember{}  \mBbbN{})
Date html generated:
2016_05_15-PM-10_10_51
Last ObjectModification:
2015_12_27-PM-05_58_34
Theory : eval!all
Home
Index