Nuprl Lemma : length-wf-co-list-islist

[T:Type]. ∀[t:co-list-islist(T)].  (||t|| ∈ ℕ)


Proof




Definitions occuring in Statement :  co-list-islist: co-list-islist(T) length: ||as|| nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T co-list-islist: co-list-islist(T) uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] top: Top uiff: uiff(P;Q) and: P ∧ Q
Lemmas referenced :  co-list-islist_wf termination nat_wf set-value-type le_wf int-value-type length-is-colength colength_wf islist-iff-length-has-value
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination hypothesisEquality isect_memberEquality because_Cache universeEquality independent_isectElimination intEquality lambdaEquality natural_numberEquality voidElimination voidEquality productElimination

Latex:
\mforall{}[T:Type].  \mforall{}[t:co-list-islist(T)].    (||t||  \mmember{}  \mBbbN{})



Date html generated: 2016_05_15-PM-10_10_51
Last ObjectModification: 2015_12_27-PM-05_58_34

Theory : eval!all


Home Index