Nuprl Lemma : list_ind-wf-co-list-islist
∀[A,B:Type]. ∀[L:co-list-islist(A)]. ∀[x:B]. ∀[F:A ⟶ co-list-islist(A) ⟶ B ⟶ B].
  (rec-case(L) of
   [] => x
   h::t =>
    r.F[h;t;r] ∈ B)
Proof
Definitions occuring in Statement : 
co-list-islist: co-list-islist(T)
, 
list_ind: list_ind, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2;s3]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
co-list-islist-ext-list, 
list_ind_wf, 
ext-eq_inversion, 
co-list-islist_wf, 
list_wf, 
subtype_rel_weakening
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
independent_isectElimination, 
functionEquality, 
universeEquality, 
isect_memberFormation, 
introduction, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[L:co-list-islist(A)].  \mforall{}[x:B].  \mforall{}[F:A  {}\mrightarrow{}  co-list-islist(A)  {}\mrightarrow{}  B  {}\mrightarrow{}  B].
    (rec-case(L)  of
      []  =>  x
      h::t  =>
        r.F[h;t;r]  \mmember{}  B)
Date html generated:
2016_05_15-PM-10_10_53
Last ObjectModification:
2015_12_27-PM-05_58_32
Theory : eval!all
Home
Index