Nuprl Lemma : DNS-iff-not-not-GMP
∀[A:ℕ ⟶ ℙ]. (DNSi.A[i] 
⇐⇒ ¬¬GMPi.A[i]))
Proof
Definitions occuring in Statement : 
generalized-markov-principle: GMPi.A[i])
, 
double-negation-shift: DNSi.A[i]
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
double-negation-shift: DNSi.A[i]
, 
generalized-markov-principle: GMPi.A[i])
, 
exists: ∃x:A. B[x]
, 
guard: {T}
Lemmas referenced : 
not_wf, 
generalized-markov-principle_wf, 
nat_wf, 
double-negation-shift_wf, 
all_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
lemma_by_obid, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_pairFormation
Latex:
\mforall{}[A:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  (DNSi.A[i]  \mLeftarrow{}{}\mRightarrow{}  \mneg{}\mneg{}GMPi.A[i]))
Date html generated:
2016_05_15-PM-03_20_51
Last ObjectModification:
2015_12_27-PM-01_04_21
Theory : general
Home
Index