Nuprl Lemma : EquatePairs_wf
∀[x,y,n,m:Base].
  (EquatePairs(x;n;y;m) ∈ Type) supposing ((¬(n = m ∈ Base)) and (¬(x = m ∈ Base)) and (¬(y = n ∈ Base)))
Proof
Definitions occuring in Statement : 
EquatePairs: EquatePairs(x;n;y;m)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
member: t ∈ T
, 
base: Base
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
EquatePairs: EquatePairs(x;n;y;m)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
prop: ℙ
, 
and: P ∧ Q
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
not: ¬A
, 
false: False
Lemmas referenced : 
pertype_wf, 
not_wf, 
equal_wf, 
base_wf, 
or_wf, 
equal-wf-base, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
independent_isectElimination, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
lambdaEquality, 
productEquality, 
lambdaFormation, 
unionElimination, 
inlFormation, 
productElimination, 
inrFormation, 
independent_pairFormation, 
independent_functionElimination, 
voidElimination
Latex:
\mforall{}[x,y,n,m:Base].    (EquatePairs(x;n;y;m)  \mmember{}  Type)  supposing  ((\mneg{}(n  =  m))  and  (\mneg{}(x  =  m))  and  (\mneg{}(y  =  n)))
Date html generated:
2016_05_15-PM-03_15_42
Last ObjectModification:
2015_12_27-PM-01_05_05
Theory : general
Home
Index