Nuprl Lemma : EquatePairs_wf

[x,y,n,m:Base].
  (EquatePairs(x;n;y;m) ∈ Type) supposing ((¬(n m ∈ Base)) and (x m ∈ Base)) and (y n ∈ Base)))


Proof




Definitions occuring in Statement :  EquatePairs: EquatePairs(x;n;y;m) uimplies: supposing a uall: [x:A]. B[x] not: ¬A member: t ∈ T base: Base universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a EquatePairs: EquatePairs(x;n;y;m) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] prop: and: P ∧ Q or: P ∨ Q all: x:A. B[x] implies:  Q guard: {T} not: ¬A false: False
Lemmas referenced :  pertype_wf not_wf equal_wf base_wf or_wf equal-wf-base and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule independent_isectElimination hypothesis axiomEquality equalityTransitivity equalitySymmetry hypothesisEquality isect_memberEquality because_Cache lambdaEquality productEquality lambdaFormation unionElimination inlFormation productElimination inrFormation independent_pairFormation independent_functionElimination voidElimination

Latex:
\mforall{}[x,y,n,m:Base].    (EquatePairs(x;n;y;m)  \mmember{}  Type)  supposing  ((\mneg{}(n  =  m))  and  (\mneg{}(x  =  m))  and  (\mneg{}(y  =  n)))



Date html generated: 2016_05_15-PM-03_15_42
Last ObjectModification: 2015_12_27-PM-01_05_05

Theory : general


Home Index