Nuprl Lemma : Peirce-subtype-dneg-elim

(∀[P,B:ℙ].  (((P  B)  P)  P)) ⊆(∀[P:ℙ]. ((¬¬P)  P))


Proof




Definitions occuring in Statement :  subtype_rel: A ⊆B uall: [x:A]. B[x] prop: not: ¬A implies:  Q
Definitions unfolded in proof :  so_apply: x[s] implies:  Q so_lambda: λ2x.t[x] prop: uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] guard: {T} false: False uimplies: supposing a not: ¬A
Lemmas referenced :  uall_wf equal_wf isect_wf void_wf false_wf not_wf subtype_rel-equal
Rules used in proof :  hypothesisEquality functionEquality cumulativity thin isectElimination extract_by_obid introduction instantiate universeEquality sqequalRule sqequalHypSubstitution hypothesis applyEquality cut isect_memberEquality lambdaEquality sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution because_Cache isectEquality independent_functionElimination dependent_functionElimination lambdaFormation equalitySymmetry equalityTransitivity voidEquality voidElimination independent_isectElimination functionExtensionality

Latex:
(\mforall{}[P,B:\mBbbP{}].    (((P  {}\mRightarrow{}  B)  {}\mRightarrow{}  P)  {}\mRightarrow{}  P))  \msubseteq{}r  (\mforall{}[P:\mBbbP{}].  ((\mneg{}\mneg{}P)  {}\mRightarrow{}  P))



Date html generated: 2018_05_21-PM-06_28_54
Last ObjectModification: 2017_12_27-PM-02_39_51

Theory : general


Home Index