Nuprl Lemma : Peirce-subtype-dneg-elim
(∀[P,B:ℙ].  (((P 
⇒ B) 
⇒ P) 
⇒ P)) ⊆r (∀[P:ℙ]. ((¬¬P) 
⇒ P))
Proof
Definitions occuring in Statement : 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
not: ¬A
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
false: False
, 
uimplies: b supposing a
, 
not: ¬A
Lemmas referenced : 
uall_wf, 
equal_wf, 
isect_wf, 
void_wf, 
false_wf, 
not_wf, 
subtype_rel-equal
Rules used in proof : 
hypothesisEquality, 
functionEquality, 
cumulativity, 
thin, 
isectElimination, 
extract_by_obid, 
introduction, 
instantiate, 
universeEquality, 
sqequalRule, 
sqequalHypSubstitution, 
hypothesis, 
applyEquality, 
cut, 
isect_memberEquality, 
lambdaEquality, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
because_Cache, 
isectEquality, 
independent_functionElimination, 
dependent_functionElimination, 
lambdaFormation, 
equalitySymmetry, 
equalityTransitivity, 
voidEquality, 
voidElimination, 
independent_isectElimination, 
functionExtensionality
Latex:
(\mforall{}[P,B:\mBbbP{}].    (((P  {}\mRightarrow{}  B)  {}\mRightarrow{}  P)  {}\mRightarrow{}  P))  \msubseteq{}r  (\mforall{}[P:\mBbbP{}].  ((\mneg{}\mneg{}P)  {}\mRightarrow{}  P))
Date html generated:
2018_05_21-PM-06_28_54
Last ObjectModification:
2017_12_27-PM-02_39_51
Theory : general
Home
Index