Nuprl Lemma : awf-system_wf
∀[I,A:Type].  (awf-system{i:l}(I;A) ∈ 𝕌')
Proof
Definitions occuring in Statement : 
awf-system: awf-system{i:l}(I;A)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
awf-system: awf-system{i:l}(I;A)
, 
prop: ℙ
, 
and: P ∧ Q
Lemmas referenced : 
isect2_wf, 
and_wf, 
subtype_rel_wf, 
list_wf, 
awf_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
isectEquality, 
setEquality, 
universeEquality, 
cumulativity, 
unionEquality, 
hypothesisEquality, 
hypothesis, 
functionEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[I,A:Type].    (awf-system\{i:l\}(I;A)  \mmember{}  \mBbbU{}')
Date html generated:
2016_05_15-PM-07_25_38
Last ObjectModification:
2015_12_27-AM-11_23_17
Theory : general
Home
Index