Nuprl Lemma : branch_wf

[P:ℙ]. ∀[d:Dec(P)]. ∀[T:Type]. ∀[A:P ⟶ T]. ∀[B:T].  (if p:P then A[p] else fi  ∈ T)


Proof




Definitions occuring in Statement :  branch: if p:P then A[p] else fi  decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  branch: if p:P then A[p] else fi  uall: [x:A]. B[x] member: t ∈ T decidable: Dec(P) or: P ∨ Q prop: all: x:A. B[x] implies:  Q so_apply: x[s]
Lemmas referenced :  not_wf equal_wf decidable_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution hypothesisEquality equalityTransitivity hypothesis equalitySymmetry thin unionEquality cumulativity extract_by_obid isectElimination lambdaFormation unionElimination applyEquality dependent_functionElimination independent_functionElimination axiomEquality isect_memberEquality because_Cache functionEquality universeEquality

Latex:
\mforall{}[P:\mBbbP{}].  \mforall{}[d:Dec(P)].  \mforall{}[T:Type].  \mforall{}[A:P  {}\mrightarrow{}  T].  \mforall{}[B:T].    (if  p:P  then  A[p]  else  B  fi    \mmember{}  T)



Date html generated: 2019_10_15-AM-11_07_10
Last ObjectModification: 2018_08_21-PM-01_58_56

Theory : general


Home Index