Nuprl Lemma : chrem_wf

r,s,a,b:ℤ.  (chrem(a;r;b;s) ∈ {x:ℤ(x ≡ mod r) ∧ (x ≡ mod s)}  (∃x:ℤ [((x ≡ mod r) ∧ (x ≡ mod s))])))


Proof




Definitions occuring in Statement :  chrem: chrem(a;r;b;s) eqmod: a ≡ mod m all: x:A. B[x] sq_exists: x:A [B[x]] not: ¬A and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  union: left right int:
Definitions unfolded in proof :  all: x:A. B[x] chrem: chrem(a;r;b;s) genrec-ap: genrec-ap absval: |i| chinese-remainder2-extract member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] sq_exists: x:A [B[x]] decidable: Dec(P) or: P ∨ Q
Lemmas referenced :  chinese-remainder2-extract subtype_rel_self decidable_wf sq_exists_wf eqmod_wf not_wf istype-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalRule cut applyEquality thin instantiate extract_by_obid hypothesis introduction sqequalHypSubstitution isectElimination functionEquality intEquality lambdaEquality_alt productEquality hypothesisEquality inhabitedIsType unionEquality setEquality because_Cache

Latex:
\mforall{}r,s,a,b:\mBbbZ{}.
    (chrem(a;r;b;s)
      \mmember{}  \{x:\mBbbZ{}|  (x  \mequiv{}  a  mod  r)  \mwedge{}  (x  \mequiv{}  b  mod  s)\}    +  (\mneg{}(\mexists{}x:\mBbbZ{}  [((x  \mequiv{}  a  mod  r)  \mwedge{}  (x  \mequiv{}  b  mod  s))])))



Date html generated: 2020_05_20-AM-08_13_45
Last ObjectModification: 2019_11_27-PM-03_15_47

Theory : general


Home Index