Nuprl Lemma : compat-cons

[T:Type]. ∀as,bs:T List. ∀a,b:T.  ([a as] || [b bs] ⇐⇒ (a b ∈ T) ∧ as || bs)


Proof




Definitions occuring in Statement :  compat: l1 || l2 cons: [a b] list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: rev_implies:  Q compat: l1 || l2 or: P ∨ Q guard: {T} cand: c∧ B
Lemmas referenced :  compat_wf cons_wf and_wf equal_wf list_wf cons_iseg iseg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination universeEquality unionElimination dependent_functionElimination independent_functionElimination equalitySymmetry inlFormation sqequalRule inrFormation

Latex:
\mforall{}[T:Type].  \mforall{}as,bs:T  List.  \mforall{}a,b:T.    ([a  /  as]  ||  [b  /  bs]  \mLeftarrow{}{}\mRightarrow{}  (a  =  b)  \mwedge{}  as  ||  bs)



Date html generated: 2016_05_15-PM-03_49_52
Last ObjectModification: 2015_12_27-PM-01_22_25

Theory : general


Home Index