Nuprl Lemma : compat-cons
∀[T:Type]. ∀as,bs:T List. ∀a,b:T.  ([a / as] || [b / bs] 
⇐⇒ (a = b ∈ T) ∧ as || bs)
Proof
Definitions occuring in Statement : 
compat: l1 || l2
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
compat: l1 || l2
, 
or: P ∨ Q
, 
guard: {T}
, 
cand: A c∧ B
Lemmas referenced : 
compat_wf, 
cons_wf, 
and_wf, 
equal_wf, 
list_wf, 
cons_iseg, 
iseg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
universeEquality, 
unionElimination, 
dependent_functionElimination, 
independent_functionElimination, 
equalitySymmetry, 
inlFormation, 
sqequalRule, 
inrFormation
Latex:
\mforall{}[T:Type].  \mforall{}as,bs:T  List.  \mforall{}a,b:T.    ([a  /  as]  ||  [b  /  bs]  \mLeftarrow{}{}\mRightarrow{}  (a  =  b)  \mwedge{}  as  ||  bs)
Date html generated:
2016_05_15-PM-03_49_52
Last ObjectModification:
2015_12_27-PM-01_22_25
Theory : general
Home
Index