Nuprl Lemma : csm-state_wf

[V:Type]. ∀[sm:CSM(V)]. ∀[i:V]. ∀[L:(csm-aux(sm;i) × (Cmd(sm) Msg(sm))) List].  (csm-state(sm;i;L) ∈ Type(sm;i))


Proof




Definitions occuring in Statement :  csm-state: csm-state(sm;i;L) csm-aux: csm-aux(sm;i) csm-type: Type(sm;i) csm-msgtype: Msg(sm) csm-cmd: Cmd(sm) csm: CSM(V) list: List uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T csm-state: csm-state(sm;i;L) spreadn: spread8 csm: CSM(V) csm-aux: csm-aux(sm;i) pi2: snd(t) pi1: fst(t) csm-cmd: Cmd(sm) csm-msgtype: Msg(sm) csm-type: Type(sm;i) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  list_accum_wf list_wf csm-aux_wf csm-cmd_wf csm-msgtype_wf csm_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin lemma_by_obid isectElimination productEquality applyEquality hypothesisEquality unionEquality lambdaEquality spreadEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[V:Type].  \mforall{}[sm:CSM(V)].  \mforall{}[i:V].  \mforall{}[L:(csm-aux(sm;i)  \mtimes{}  (Cmd(sm)  +  Msg(sm)))  List].
    (csm-state(sm;i;L)  \mmember{}  Type(sm;i))



Date html generated: 2016_05_15-PM-05_11_18
Last ObjectModification: 2015_12_27-PM-02_23_01

Theory : general


Home Index