Nuprl Lemma : csm-state_wf
∀[V:Type]. ∀[sm:CSM(V)]. ∀[i:V]. ∀[L:(csm-aux(sm;i) × (Cmd(sm) + Msg(sm))) List].  (csm-state(sm;i;L) ∈ Type(sm;i))
Proof
Definitions occuring in Statement : 
csm-state: csm-state(sm;i;L)
, 
csm-aux: csm-aux(sm;i)
, 
csm-type: Type(sm;i)
, 
csm-msgtype: Msg(sm)
, 
csm-cmd: Cmd(sm)
, 
csm: CSM(V)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
csm-state: csm-state(sm;i;L)
, 
spreadn: spread8, 
csm: CSM(V)
, 
csm-aux: csm-aux(sm;i)
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
csm-cmd: Cmd(sm)
, 
csm-msgtype: Msg(sm)
, 
csm-type: Type(sm;i)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
list_accum_wf, 
list_wf, 
csm-aux_wf, 
csm-cmd_wf, 
csm-msgtype_wf, 
csm_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
productEquality, 
applyEquality, 
hypothesisEquality, 
unionEquality, 
lambdaEquality, 
spreadEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[V:Type].  \mforall{}[sm:CSM(V)].  \mforall{}[i:V].  \mforall{}[L:(csm-aux(sm;i)  \mtimes{}  (Cmd(sm)  +  Msg(sm)))  List].
    (csm-state(sm;i;L)  \mmember{}  Type(sm;i))
Date html generated:
2016_05_15-PM-05_11_18
Last ObjectModification:
2015_12_27-PM-02_23_01
Theory : general
Home
Index