Nuprl Lemma : decidable__llex-le

[A:Type]. ∀[<:A ⟶ A ⟶ ℙ].
  ((∀a,b:A.  (Dec(<[a;b]) ∧ Dec(a b ∈ A)))  (∀L1,L2:A List.  Dec(L1 llex-le(A;a,b.<[a;b]) L2)))


Proof




Definitions occuring in Statement :  llex-le: llex-le(A;a,b.<[a; b]) list: List decidable: Dec(P) uall: [x:A]. B[x] prop: infix_ap: y so_apply: x[s1;s2] all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s1;s2] so_apply: x[s] llex-le: llex-le(A;a,b.<[a; b]) infix_ap: y decidable: Dec(P) or: P ∨ Q so_lambda: λ2y.t[x; y] guard: {T}
Lemmas referenced :  decidable__llex list_wf all_wf decidable_wf equal_wf not_wf or_wf llex_wf decidable__or decidable__equal_list
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation independent_functionElimination dependent_functionElimination cumulativity sqequalRule lambdaEquality productEquality applyEquality functionExtensionality functionEquality because_Cache universeEquality unionElimination inlFormation inrFormation productElimination

Latex:
\mforall{}[A:Type].  \mforall{}[<:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}a,b:A.    (Dec(<[a;b])  \mwedge{}  Dec(a  =  b)))  {}\mRightarrow{}  (\mforall{}L1,L2:A  List.    Dec(L1  llex-le(A;a,b.<[a;b])  L2)))



Date html generated: 2017_02_20-AM-10_56_00
Last ObjectModification: 2017_02_02-PM-09_46_22

Theory : general


Home Index