Nuprl Lemma : do-apply-compose'

[A,B,C:Type]. ∀[g:A ⟶ (B Top)]. ∀[f:A ⟶ B ⟶ C]. ∀[x:A].
  do-apply(f o' g;x) do-apply(g;x) supposing ↑can-apply(f o' g;x)


Proof




Definitions occuring in Statement :  p-compose': o' g do-apply: do-apply(f;x) can-apply: can-apply(f;x) assert: b uimplies: supposing a uall: [x:A]. B[x] top: Top apply: a function: x:A ⟶ B[x] union: left right universe: Type sqequal: t
Definitions unfolded in proof :  do-apply: do-apply(f;x) p-compose': o' g can-apply: can-apply(f;x) member: t ∈ T all: x:A. B[x] implies:  Q isl: isl(x) outl: outl(x) ifthenelse: if then else fi  btrue: tt assert: b prop: bfalse: ff false: False uall: [x:A]. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a top: Top
Lemmas referenced :  top_wf true_wf false_wf equal_wf assert_wf can-apply_wf p-compose'_wf subtype_rel_dep_function
Rules used in proof :  cut thin sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule applyEquality functionExtensionality hypothesisEquality cumulativity unionEquality introduction extract_by_obid hypothesis lambdaFormation unionElimination sqequalHypSubstitution voidElimination isectElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination lambdaEquality because_Cache independent_isectElimination isect_memberEquality voidEquality functionEquality universeEquality isect_memberFormation sqequalAxiom

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[g:A  {}\mrightarrow{}  (B  +  Top)].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  C].  \mforall{}[x:A].
    do-apply(f  o'  g;x)  \msim{}  f  x  do-apply(g;x)  supposing  \muparrow{}can-apply(f  o'  g;x)



Date html generated: 2017_10_01-AM-09_13_52
Last ObjectModification: 2017_07_26-PM-04_49_08

Theory : general


Home Index