Nuprl Lemma : p-compose'_wf

[A,B,C:Type]. ∀[g:A ⟶ (B Top)]. ∀[f:A ⟶ B ⟶ C].  (f o' g ∈ A ⟶ (C Top))


Proof




Definitions occuring in Statement :  p-compose': o' g uall: [x:A]. B[x] top: Top member: t ∈ T function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T p-compose': o' g subtype_rel: A ⊆B all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff top: Top exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False can-apply: can-apply(f;x) isl: isl(x) not: ¬A true: True prop:
Lemmas referenced :  can-apply_wf eqtt_to_assert do-apply_wf istype-top eqff_to_assert subtype_rel_union top_wf istype-void istype-universe bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaEquality_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality functionExtensionality applyEquality hypothesis because_Cache sqequalRule inhabitedIsType lambdaFormation_alt unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination inlEquality_alt isect_memberEquality_alt voidElimination dependent_pairFormation_alt equalityIsType1 promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination axiomEquality functionIsType unionIsType universeIsType universeEquality natural_numberEquality inrEquality_alt

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[g:A  {}\mrightarrow{}  (B  +  Top)].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  C].    (f  o'  g  \mmember{}  A  {}\mrightarrow{}  (C  +  Top))



Date html generated: 2019_10_15-AM-11_07_21
Last ObjectModification: 2018_10_11-PM-07_03_11

Theory : general


Home Index