Nuprl Lemma : do-apply-p-lift

[A,B:Type]. ∀[P:A ⟶ ℙ]. ∀[d:x:A ⟶ Dec(P[x])]. ∀[f:{x:A| P[x]}  ⟶ B]. ∀[x:A].
  do-apply(p-lift(d;f);x) (f x) ∈ supposing ↑can-apply(p-lift(d;f);x)


Proof




Definitions occuring in Statement :  p-lift: p-lift(d;f) do-apply: do-apply(f;x) can-apply: can-apply(f;x) assert: b decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a p-lift: p-lift(d;f) do-apply: do-apply(f;x) can-apply: can-apply(f;x) implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B all: x:A. B[x] top: Top decidable: Dec(P) or: P ∨ Q isl: isl(x) outl: outl(x) assert: b ifthenelse: if then else fi  btrue: tt bfalse: ff false: False
Lemmas referenced :  assert_wf can-apply_wf p-lift_wf top_wf subtype_rel_dep_function set_wf decidable_wf true_wf false_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin sqequalRule sqequalHypSubstitution independent_functionElimination hypothesis lemma_by_obid isectElimination hypothesisEquality lambdaEquality applyEquality setEquality universeEquality because_Cache independent_isectElimination lambdaFormation isect_memberEquality voidElimination voidEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity unionElimination dependent_set_memberEquality dependent_functionElimination

Latex:
\mforall{}[A,B:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[d:x:A  {}\mrightarrow{}  Dec(P[x])].  \mforall{}[f:\{x:A|  P[x]\}    {}\mrightarrow{}  B].  \mforall{}[x:A].
    do-apply(p-lift(d;f);x)  =  (f  x)  supposing  \muparrow{}can-apply(p-lift(d;f);x)



Date html generated: 2016_05_15-PM-03_29_25
Last ObjectModification: 2015_12_27-PM-01_09_45

Theory : general


Home Index