Nuprl Lemma : equal-product1
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[a1,a2:A]. ∀[b1:B[a1]]. ∀[b2:B[a2]].
  {<a1, b1> = <a2, b2> ∈ (a:A × B[a]) 
⇐⇒ (a1 = a2 ∈ A) ∧ (b1 = b2 ∈ B[a1])}
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
pi1: fst(t)
, 
so_apply: x[s]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
pi2: snd(t)
, 
uimplies: b supposing a
Lemmas referenced : 
and_wf, 
equal_wf, 
pi1_wf, 
subtype_rel_self, 
subtype_rel_wf, 
subtype_rel-equal
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
hypothesisEquality, 
equalitySymmetry, 
dependent_set_memberEquality, 
hypothesis, 
equalityTransitivity, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
applyEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
productElimination, 
lambdaEquality, 
cumulativity, 
functionExtensionality, 
dependent_pairEquality, 
hyp_replacement, 
independent_pairEquality, 
dependent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
independent_isectElimination
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[a1,a2:A].  \mforall{}[b1:B[a1]].  \mforall{}[b2:B[a2]].
    \{<a1,  b1>  =  <a2,  b2>  \mLeftarrow{}{}\mRightarrow{}  (a1  =  a2)  \mwedge{}  (b1  =  b2)\}
Date html generated:
2017_10_01-AM-09_11_06
Last ObjectModification:
2017_07_26-PM-04_47_16
Theory : general
Home
Index