Nuprl Lemma : equal-product1

[A:Type]. ∀[B:A ⟶ Type]. ∀[a1,a2:A]. ∀[b1:B[a1]]. ∀[b2:B[a2]].
  {<a1, b1> = <a2, b2> ∈ (a:A × B[a]) ⇐⇒ (a1 a2 ∈ A) ∧ (b1 b2 ∈ B[a1])}


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] guard: {T} so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q function: x:A ⟶ B[x] pair: <a, b> product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q pi1: fst(t) so_apply: x[s] prop: so_lambda: λ2x.t[x] rev_implies:  Q subtype_rel: A ⊆B pi2: snd(t) uimplies: supposing a
Lemmas referenced :  and_wf equal_wf pi1_wf subtype_rel_self subtype_rel_wf subtype_rel-equal
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation lambdaFormation hypothesisEquality equalitySymmetry dependent_set_memberEquality hypothesis equalityTransitivity extract_by_obid sqequalHypSubstitution isectElimination thin productEquality applyEquality applyLambdaEquality setElimination rename productElimination lambdaEquality cumulativity functionExtensionality dependent_pairEquality hyp_replacement independent_pairEquality dependent_functionElimination axiomEquality isect_memberEquality because_Cache independent_isectElimination

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[a1,a2:A].  \mforall{}[b1:B[a1]].  \mforall{}[b2:B[a2]].
    \{<a1,  b1>  =  <a2,  b2>  \mLeftarrow{}{}\mRightarrow{}  (a1  =  a2)  \mwedge{}  (b1  =  b2)\}



Date html generated: 2017_10_01-AM-09_11_06
Last ObjectModification: 2017_07_26-PM-04_47_16

Theory : general


Home Index