Nuprl Lemma : equipollent-type-unit-pair
∀[T:Type]. T ~ T × Unit
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
biject: Bij(A;B;f)
, 
surject: Surj(A;B;f)
, 
inject: Inj(A;B;f)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
pi1: fst(t)
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
top: Top
Lemmas referenced : 
it_wf, 
and_wf, 
equal_wf, 
unit_wf2, 
pi1_wf_top, 
subtype_rel_product, 
top_wf, 
biject_wf, 
equal-unit
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
universeEquality, 
dependent_pairFormation, 
lambdaEquality, 
independent_pairEquality, 
hypothesisEquality, 
cut, 
lemma_by_obid, 
hypothesis, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
equalitySymmetry, 
dependent_set_memberEquality, 
equalityTransitivity, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
applyEquality, 
setElimination, 
rename, 
productElimination, 
because_Cache, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setEquality
Latex:
\mforall{}[T:Type].  T  \msim{}  T  \mtimes{}  Unit
Date html generated:
2016_05_15-PM-06_06_44
Last ObjectModification:
2015_12_27-PM-00_16_03
Theory : general
Home
Index