Nuprl Lemma : equipollent-type-unit-pair

[T:Type]. T × Unit


Proof




Definitions occuring in Statement :  equipollent: B uall: [x:A]. B[x] unit: Unit product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T equipollent: B exists: x:A. B[x] biject: Bij(A;B;f) surject: Surj(A;B;f) inject: Inj(A;B;f) and: P ∧ Q all: x:A. B[x] implies:  Q pi1: fst(t) prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a top: Top
Lemmas referenced :  it_wf and_wf equal_wf unit_wf2 pi1_wf_top subtype_rel_product top_wf biject_wf equal-unit
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation universeEquality dependent_pairFormation lambdaEquality independent_pairEquality hypothesisEquality cut lemma_by_obid hypothesis sqequalRule independent_pairFormation lambdaFormation equalitySymmetry dependent_set_memberEquality equalityTransitivity sqequalHypSubstitution isectElimination thin productEquality applyEquality setElimination rename productElimination because_Cache independent_isectElimination isect_memberEquality voidElimination voidEquality setEquality

Latex:
\mforall{}[T:Type].  T  \msim{}  T  \mtimes{}  Unit



Date html generated: 2016_05_15-PM-06_06_44
Last ObjectModification: 2015_12_27-PM-00_16_03

Theory : general


Home Index