Nuprl Lemma : finite-double-negation-shift-extract

[A:ℙ]. ∀[B:ℕ ⟶ ℙ].  ∀n:ℕ((∀i:ℕn. (((B i)  A)  A))  ((∀i:ℕn. (B i))  A)  A)


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  member: t ∈ T finite-double-negation-shift natrec: natrec genrec: genrec so_apply: x[s1;s2] decidable__equal_int decidable__int_equal uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T any: any x subtract: m so_lambda: λ2y.t[x; y] iff_weakening_equal genrec-ap: genrec-ap
Lemmas referenced :  finite-double-negation-shift lifting-strict-int_eq top_wf equal_wf has-value_wf_base base_wf is-exception_wf lifting-strict-spread decidable__equal_int decidable__int_equal iff_weakening_equal
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution isectElimination baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueDecide hypothesisEquality equalityTransitivity equalitySymmetry unionEquality unionElimination sqleReflexivity dependent_functionElimination independent_functionElimination baseApply closedConclusion decideExceptionCases inrFormation because_Cache imageMemberEquality imageElimination exceptionSqequal inlFormation callbyvalueApply applyExceptionCases

Latex:
\mforall{}[A:\mBbbP{}].  \mforall{}[B:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].    \mforall{}n:\mBbbN{}.  ((\mforall{}i:\mBbbN{}n.  (((B  i)  {}\mRightarrow{}  A)  {}\mRightarrow{}  A))  {}\mRightarrow{}  ((\mforall{}i:\mBbbN{}n.  (B  i))  {}\mRightarrow{}  A)  {}\mRightarrow{}  A)



Date html generated: 2017_10_01-AM-09_10_26
Last ObjectModification: 2017_07_26-PM-04_46_57

Theory : general


Home Index