Nuprl Lemma : inv-rel_wf

[A,B:Type]. ∀[f:A ⟶ B]. ∀[finv:B ⟶ (A?)].  (inv-rel(A;B;f;finv) ∈ ℙ)


Proof




Definitions occuring in Statement :  inv-rel: inv-rel(A;B;f;finv) uall: [x:A]. B[x] prop: unit: Unit member: t ∈ T function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  inv-rel: inv-rel(A;B;f;finv) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s]
Lemmas referenced :  and_wf all_wf equal_wf unit_wf2
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality functionEquality unionEquality hypothesis applyEquality inlEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[finv:B  {}\mrightarrow{}  (A?)].    (inv-rel(A;B;f;finv)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-03_54_57
Last ObjectModification: 2015_12_27-PM-01_24_36

Theory : general


Home Index