Nuprl Lemma : inv-rel_wf
∀[A,B:Type]. ∀[f:A ⟶ B]. ∀[finv:B ⟶ (A?)].  (inv-rel(A;B;f;finv) ∈ ℙ)
Proof
Definitions occuring in Statement : 
inv-rel: inv-rel(A;B;f;finv)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
unit: Unit
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
inv-rel: inv-rel(A;B;f;finv)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
and_wf, 
all_wf, 
equal_wf, 
unit_wf2
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
functionEquality, 
unionEquality, 
hypothesis, 
applyEquality, 
inlEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[finv:B  {}\mrightarrow{}  (A?)].    (inv-rel(A;B;f;finv)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-03_54_57
Last ObjectModification:
2015_12_27-PM-01_24_36
Theory : general
Home
Index