Nuprl Lemma : isect2-record
∀[T1,T2:Atom ⟶ Type].
  ((record(x.T1[x]) ⋂ record(x.T2[x]) ⊆r record(x.T1[x] ⋂ T2[x]))
  ∧ (record(x.T1[x] ⋂ T2[x]) ⊆r record(x.T1[x]) ⋂ record(x.T2[x])))
Proof
Definitions occuring in Statement : 
record: record(x.T[x])
, 
isect2: T1 ⋂ T2
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
atom: Atom
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
record: record(x.T[x])
, 
isect2: T1 ⋂ T2
, 
subtype_rel: A ⊆r B
, 
ifthenelse: if b then t else f fi 
, 
bool: 𝔹
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
bfalse: ff
Lemmas referenced : 
subtype_rel_dep_function, 
isect2_wf, 
isect2_subtype_rel, 
isect2_subtype_rel2, 
bool_wf, 
isect2_decomp
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
isect_memberEquality, 
hypothesisEquality, 
applyEquality, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
atomEquality, 
because_Cache, 
independent_isectElimination, 
lambdaFormation, 
functionEquality, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
cumulativity, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionExtensionality, 
equalityElimination
Latex:
\mforall{}[T1,T2:Atom  {}\mrightarrow{}  Type].
    ((record(x.T1[x])  \mcap{}  record(x.T2[x])  \msubseteq{}r  record(x.T1[x]  \mcap{}  T2[x]))
    \mwedge{}  (record(x.T1[x]  \mcap{}  T2[x])  \msubseteq{}r  record(x.T1[x])  \mcap{}  record(x.T2[x])))
Date html generated:
2016_05_15-PM-06_43_24
Last ObjectModification:
2015_12_27-PM-00_10_08
Theory : general
Home
Index