Nuprl Lemma : isect2-record

[T1,T2:Atom ⟶ Type].
  ((record(x.T1[x]) ⋂ record(x.T2[x]) ⊆record(x.T1[x] ⋂ T2[x]))
  ∧ (record(x.T1[x] ⋂ T2[x]) ⊆record(x.T1[x]) ⋂ record(x.T2[x])))


Proof




Definitions occuring in Statement :  record: record(x.T[x]) isect2: T1 ⋂ T2 subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] and: P ∧ Q function: x:A ⟶ B[x] atom: Atom universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B record: record(x.T[x]) isect2: T1 ⋂ T2 subtype_rel: A ⊆B ifthenelse: if then else fi  bool: 𝔹 so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a all: x:A. B[x] unit: Unit it: btrue: tt bfalse: ff
Lemmas referenced :  subtype_rel_dep_function isect2_wf isect2_subtype_rel isect2_subtype_rel2 bool_wf isect2_decomp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis sqequalRule lambdaEquality isect_memberEquality hypothesisEquality applyEquality sqequalHypSubstitution unionElimination thin lemma_by_obid isectElimination atomEquality because_Cache independent_isectElimination lambdaFormation functionEquality productElimination independent_pairEquality axiomEquality cumulativity universeEquality equalityTransitivity equalitySymmetry functionExtensionality equalityElimination

Latex:
\mforall{}[T1,T2:Atom  {}\mrightarrow{}  Type].
    ((record(x.T1[x])  \mcap{}  record(x.T2[x])  \msubseteq{}r  record(x.T1[x]  \mcap{}  T2[x]))
    \mwedge{}  (record(x.T1[x]  \mcap{}  T2[x])  \msubseteq{}r  record(x.T1[x])  \mcap{}  record(x.T2[x])))



Date html generated: 2016_05_15-PM-06_43_24
Last ObjectModification: 2015_12_27-PM-00_10_08

Theory : general


Home Index