Nuprl Lemma : member-tagged+-right
∀[T,B:Type]. ∀[a:Atom]. ∀[p:T |+ a:B].  p ∈ T supposing ¬(p.tag = a ∈ Atom)
Proof
Definitions occuring in Statement : 
tagged-tag: x.tag, 
tagged+: T |+ z:B, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
member: t ∈ T, 
atom: Atom, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
prop: ℙ
Lemmas referenced : 
tagged+_subtype_rel, 
not_wf, 
equal_wf, 
tagged-tag_wf2, 
tagged+_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
applyEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
atomEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T,B:Type].  \mforall{}[a:Atom].  \mforall{}[p:T  |+  a:B].    p  \mmember{}  T  supposing  \mneg{}(p.tag  =  a)
Date html generated:
2016_05_15-PM-06_49_29
Last ObjectModification:
2015_12_27-AM-11_45_32
Theory : general
Home
Index