Nuprl Lemma : member-tagged+-right

[T,B:Type]. ∀[a:Atom]. ∀[p:T |+ a:B].  p ∈ supposing ¬(p.tag a ∈ Atom)


Proof




Definitions occuring in Statement :  tagged-tag: x.tag tagged+: |+ z:B uimplies: supposing a uall: [x:A]. B[x] not: ¬A member: t ∈ T atom: Atom universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B prop:
Lemmas referenced :  tagged+_subtype_rel not_wf equal_wf tagged-tag_wf2 tagged+_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality applyEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry atomEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T,B:Type].  \mforall{}[a:Atom].  \mforall{}[p:T  |+  a:B].    p  \mmember{}  T  supposing  \mneg{}(p.tag  =  a)



Date html generated: 2016_05_15-PM-06_49_29
Last ObjectModification: 2015_12_27-AM-11_45_32

Theory : general


Home Index