Nuprl Lemma : tagged-tag_wf2
∀[T,B:Type]. ∀[z:Atom]. ∀[x:T |+ z:B].  (x.tag ∈ Atom)
Proof
Definitions occuring in Statement : 
tagged-tag: x.tag
, 
tagged+: T |+ z:B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
atom: Atom
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
tagged-tag: x.tag
, 
tagged+: T |+ z:B
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
pi1: fst(t)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
or: P ∨ Q
, 
tag-case: z:T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
isect2_decomp, 
tag-case_wf, 
spread_wf, 
top_wf, 
isect2_subtype_rel3, 
subtype_rel_product, 
ifthenelse_wf, 
eq_atom_wf, 
subtype_rel_wf, 
tagged+_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
atomEquality, 
because_Cache, 
applyEquality, 
productEquality, 
independent_isectElimination, 
inrFormation, 
lambdaEquality, 
instantiate, 
universeEquality, 
lambdaFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
axiomEquality
Latex:
\mforall{}[T,B:Type].  \mforall{}[z:Atom].  \mforall{}[x:T  |+  z:B].    (x.tag  \mmember{}  Atom)
Date html generated:
2016_05_15-PM-06_47_22
Last ObjectModification:
2015_12_27-AM-11_48_02
Theory : general
Home
Index