Nuprl Lemma : p-fun-exp-one

[A:Type]. ∀[f:A ⟶ (A Top)].  (f^1 f ∈ (A ⟶ (A Top)))


Proof




Definitions occuring in Statement :  p-fun-exp: f^n uall: [x:A]. B[x] top: Top function: x:A ⟶ B[x] union: left right natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  p-fun-exp: f^n all: x:A. B[x] member: t ∈ T top: Top uall: [x:A]. B[x] squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  primrec1_lemma equal_wf squash_wf true_wf top_wf p-compose-id iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation applyEquality lambdaEquality imageElimination isectElimination hypothesisEquality equalityTransitivity equalitySymmetry universeEquality functionEquality cumulativity unionEquality because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination axiomEquality

Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  (A  +  Top)].    (f\^{}1  =  f)



Date html generated: 2017_10_01-AM-09_14_25
Last ObjectModification: 2017_07_26-PM-04_49_32

Theory : general


Home Index