Nuprl Lemma : proof-tree-induction-ext

[Sequent,Rule:Type].
  ∀effect:(Sequent × Rule) ⟶ (Sequent List?)
    ∀[Q:proof-tree(Sequent;Rule;effect) ⟶ ℙ]
      ((∀s:Sequent. ∀r:Rule.  Q[proof-abort(s;r)] supposing ↑isr(effect <s, r>))
       (∀s:Sequent. ∀r:Rule.
            ∀L:proof-tree(Sequent;Rule;effect) List
              (∀pf∈L.Q[pf])  Q[make-proof-tree(s;r;L)] supposing ||L|| ||outl(effect <s, r>)|| ∈ ℤ 
            supposing ↑isl(effect <s, r>))
       (∀pf:proof-tree(Sequent;Rule;effect). Q[pf]))


Proof




Definitions occuring in Statement :  proof-abort: proof-abort(s;r) make-proof-tree: make-proof-tree(s;r;L) proof-tree: proof-tree(Sequent;Rule;effect) l_all: (∀x∈L.P[x]) length: ||as|| list: List outl: outl(x) assert: b isr: isr(x) isl: isl(x) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q unit: Unit apply: a function: x:A ⟶ B[x] pair: <a, b> product: x:A × B[x] union: left right int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T proof_tree_ind: proof_tree_ind(effect;abort;progress;pf) proof-tree-induction W-induction uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] top: Top uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  proof-tree-induction lifting-strict-spread has-value_wf_base base_wf is-exception_wf top_wf equal_wf lifting-strict-decide W-induction
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueApply baseApply closedConclusion hypothesisEquality applyExceptionCases inrFormation imageMemberEquality imageElimination inlFormation because_Cache sqequalSqle divergentSqle callbyvalueSpread productEquality productElimination sqleReflexivity dependent_functionElimination independent_functionElimination spreadExceptionCases axiomSqleEquality exceptionSqequal

Latex:
\mforall{}[Sequent,Rule:Type].
    \mforall{}effect:(Sequent  \mtimes{}  Rule)  {}\mrightarrow{}  (Sequent  List?)
        \mforall{}[Q:proof-tree(Sequent;Rule;effect)  {}\mrightarrow{}  \mBbbP{}]
            ((\mforall{}s:Sequent.  \mforall{}r:Rule.    Q[proof-abort(s;r)]  supposing  \muparrow{}isr(effect  <s,  r>))
            {}\mRightarrow{}  (\mforall{}s:Sequent.  \mforall{}r:Rule.
                        \mforall{}L:proof-tree(Sequent;Rule;effect)  List
                            (\mforall{}pf\mmember{}L.Q[pf])  {}\mRightarrow{}  Q[make-proof-tree(s;r;L)]  supposing  ||L||  =  ||outl(effect  <s,  r>)|| 
                        supposing  \muparrow{}isl(effect  <s,  r>))
            {}\mRightarrow{}  (\mforall{}pf:proof-tree(Sequent;Rule;effect).  Q[pf]))



Date html generated: 2018_05_21-PM-06_28_50
Last ObjectModification: 2018_05_19-PM-04_40_00

Theory : general


Home Index