Nuprl Lemma : proof-tree-induction
∀[Sequent,Rule:Type].
  ∀effect:(Sequent × Rule) ⟶ (Sequent List?)
    ∀[Q:proof-tree(Sequent;Rule;effect) ⟶ ℙ]
      ((∀s:Sequent. ∀r:Rule.  Q[proof-abort(s;r)] supposing ↑isr(effect <s, r>))
      
⇒ (∀s:Sequent. ∀r:Rule.
            ∀L:proof-tree(Sequent;Rule;effect) List
              (∀pf∈L.Q[pf]) 
⇒ Q[make-proof-tree(s;r;L)] supposing ||L|| = ||outl(effect <s, r>)|| ∈ ℤ 
            supposing ↑isl(effect <s, r>))
      
⇒ (∀pf:proof-tree(Sequent;Rule;effect). Q[pf]))
Proof
Definitions occuring in Statement : 
proof-abort: proof-abort(s;r)
, 
make-proof-tree: make-proof-tree(s;r;L)
, 
proof-tree: proof-tree(Sequent;Rule;effect)
, 
l_all: (∀x∈L.P[x])
, 
length: ||as||
, 
list: T List
, 
outl: outl(x)
, 
assert: ↑b
, 
isr: isr(x)
, 
isl: isl(x)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
unit: Unit
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
union: left + right
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
proof-tree: proof-tree(Sequent;Rule;effect)
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
isl: isl(x)
, 
sq_type: SQType(T)
, 
guard: {T}
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
subtype_rel: A ⊆r B
, 
isr: isr(x)
, 
prop: ℙ
, 
nat: ℕ
, 
outl: outl(x)
, 
not: ¬A
, 
false: False
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
l_all: (∀x∈L.P[x])
, 
top: Top
, 
Wsup: Wsup(a;b)
, 
make-proof-tree: make-proof-tree(s;r;L)
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
proof-abort: proof-abort(s;r)
Lemmas referenced : 
W-induction, 
int_seg_wf, 
length_wf, 
btrue_wf, 
bfalse_wf, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert_wf, 
isr_wf, 
list_wf, 
unit_wf2, 
istype-void, 
proof-tree_wf, 
istype-assert, 
istype-int, 
length_wf_nat, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
outl_wf, 
l_all_wf, 
l_member_wf, 
make-proof-tree_wf, 
subtype_rel_self, 
proof-abort_wf, 
istype-universe, 
nat_wf, 
non_neg_length, 
btrue_neq_bfalse, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
squash_wf, 
isl_wf, 
istype-le, 
mklist_wf, 
mklist_length, 
trivial-equal, 
select-mklist, 
W_wf, 
true_wf, 
Wsup_wf, 
less_than_wf, 
equal_wf, 
istype-less_than, 
lelt_wf, 
subtype_rel_sets, 
unit_subtype_base, 
subtype_rel-equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
productEquality, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
inhabitedIsType, 
hypothesis, 
unionElimination, 
natural_numberEquality, 
voidEquality, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
productIsType, 
universeIsType, 
equalityElimination, 
productElimination, 
rename, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
applyLambdaEquality, 
setElimination, 
instantiate, 
cumulativity, 
functionIsType, 
because_Cache, 
hyp_replacement, 
voidElimination, 
isectIsType, 
independent_pairEquality, 
intEquality, 
sqequalBase, 
setIsType, 
universeEquality, 
unionIsType, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
isect_memberEquality_alt, 
closedConclusion, 
functionExtensionality, 
equalityIsType1, 
baseApply, 
equalityIsType4, 
unionEquality, 
promote_hyp, 
equalityIsType3
Latex:
\mforall{}[Sequent,Rule:Type].
    \mforall{}effect:(Sequent  \mtimes{}  Rule)  {}\mrightarrow{}  (Sequent  List?)
        \mforall{}[Q:proof-tree(Sequent;Rule;effect)  {}\mrightarrow{}  \mBbbP{}]
            ((\mforall{}s:Sequent.  \mforall{}r:Rule.    Q[proof-abort(s;r)]  supposing  \muparrow{}isr(effect  <s,  r>))
            {}\mRightarrow{}  (\mforall{}s:Sequent.  \mforall{}r:Rule.
                        \mforall{}L:proof-tree(Sequent;Rule;effect)  List
                            (\mforall{}pf\mmember{}L.Q[pf])  {}\mRightarrow{}  Q[make-proof-tree(s;r;L)]  supposing  ||L||  =  ||outl(effect  <s,  r>)|| 
                        supposing  \muparrow{}isl(effect  <s,  r>))
            {}\mRightarrow{}  (\mforall{}pf:proof-tree(Sequent;Rule;effect).  Q[pf]))
Date html generated:
2020_05_20-AM-08_04_51
Last ObjectModification:
2019_12_26-PM-04_07_32
Theory : general
Home
Index