Nuprl Lemma : make-proof-tree_wf
∀[Sequent,Rule:Type]. ∀[effect:(Sequent × Rule) ⟶ (Sequent List?)]. ∀[s:Sequent]. ∀[r:Rule].
∀[L:proof-tree(Sequent;Rule;effect) List].
  (make-proof-tree(s;r;L) ∈ proof-tree(Sequent;Rule;effect)) supposing 
     ((||L|| = ||outl(effect <s, r>)|| ∈ ℤ) and 
     (↑isl(effect <s, r>)))
Proof
Definitions occuring in Statement : 
make-proof-tree: make-proof-tree(s;r;L)
, 
proof-tree: proof-tree(Sequent;Rule;effect)
, 
length: ||as||
, 
list: T List
, 
outl: outl(x)
, 
assert: ↑b
, 
isl: isl(x)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
union: left + right
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
outl: outl(x)
, 
isl: isl(x)
, 
and: P ∧ Q
, 
not: ¬A
, 
false: False
, 
subtype_rel: A ⊆r B
, 
make-proof-tree: make-proof-tree(s;r;L)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
bfalse: ff
, 
ext-eq: A ≡ B
Lemmas referenced : 
equal_wf, 
length_wf, 
proof-tree_wf, 
list_wf, 
unit_wf2, 
assert_elim, 
isl_wf, 
bfalse_wf, 
and_wf, 
btrue_neq_bfalse, 
assert_wf, 
int_seg_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
intformeq_wf, 
int_formula_prop_less_lemma, 
int_formula_prop_eq_lemma, 
true_wf, 
false_wf, 
proof-tree-ext
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
intEquality, 
hypothesisEquality, 
applyEquality, 
independent_pairEquality, 
unionEquality, 
lambdaFormation, 
unionElimination, 
independent_isectElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyLambdaEquality, 
setElimination, 
rename, 
productElimination, 
independent_functionElimination, 
voidElimination, 
dependent_functionElimination, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
productEquality, 
universeEquality, 
dependent_pairEquality, 
natural_numberEquality, 
voidEquality, 
lambdaEquality, 
cumulativity, 
functionExtensionality, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality
Latex:
\mforall{}[Sequent,Rule:Type].  \mforall{}[effect:(Sequent  \mtimes{}  Rule)  {}\mrightarrow{}  (Sequent  List?)].  \mforall{}[s:Sequent].  \mforall{}[r:Rule].
\mforall{}[L:proof-tree(Sequent;Rule;effect)  List].
    (make-proof-tree(s;r;L)  \mmember{}  proof-tree(Sequent;Rule;effect))  supposing 
          ((||L||  =  ||outl(effect  <s,  r>)||)  and 
          (\muparrow{}isl(effect  <s,  r>)))
Date html generated:
2019_10_15-AM-11_06_14
Last ObjectModification:
2018_08_21-PM-01_58_00
Theory : general
Home
Index