Nuprl Lemma : make-proof-tree_wf

[Sequent,Rule:Type]. ∀[effect:(Sequent × Rule) ⟶ (Sequent List?)]. ∀[s:Sequent]. ∀[r:Rule].
[L:proof-tree(Sequent;Rule;effect) List].
  (make-proof-tree(s;r;L) ∈ proof-tree(Sequent;Rule;effect)) supposing 
     ((||L|| ||outl(effect <s, r>)|| ∈ ℤand 
     (↑isl(effect <s, r>)))


Proof




Definitions occuring in Statement :  make-proof-tree: make-proof-tree(s;r;L) proof-tree: proof-tree(Sequent;Rule;effect) length: ||as|| list: List outl: outl(x) assert: b isl: isl(x) uimplies: supposing a uall: [x:A]. B[x] unit: Unit member: t ∈ T apply: a function: x:A ⟶ B[x] pair: <a, b> product: x:A × B[x] union: left right int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: all: x:A. B[x] implies:  Q outl: outl(x) isl: isl(x) and: P ∧ Q not: ¬A false: False subtype_rel: A ⊆B make-proof-tree: make-proof-tree(s;r;L) assert: b ifthenelse: if then else fi  btrue: tt int_seg: {i..j-} guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top bfalse: ff ext-eq: A ≡ B
Lemmas referenced :  equal_wf length_wf proof-tree_wf list_wf unit_wf2 assert_elim isl_wf bfalse_wf and_wf btrue_neq_bfalse assert_wf int_seg_wf select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf intformeq_wf int_formula_prop_less_lemma int_formula_prop_eq_lemma true_wf false_wf proof-tree-ext
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin intEquality hypothesisEquality applyEquality independent_pairEquality unionEquality lambdaFormation unionElimination independent_isectElimination dependent_set_memberEquality independent_pairFormation applyLambdaEquality setElimination rename productElimination independent_functionElimination voidElimination dependent_functionElimination isect_memberEquality because_Cache functionEquality productEquality universeEquality dependent_pairEquality natural_numberEquality voidEquality lambdaEquality cumulativity functionExtensionality approximateComputation dependent_pairFormation int_eqEquality

Latex:
\mforall{}[Sequent,Rule:Type].  \mforall{}[effect:(Sequent  \mtimes{}  Rule)  {}\mrightarrow{}  (Sequent  List?)].  \mforall{}[s:Sequent].  \mforall{}[r:Rule].
\mforall{}[L:proof-tree(Sequent;Rule;effect)  List].
    (make-proof-tree(s;r;L)  \mmember{}  proof-tree(Sequent;Rule;effect))  supposing 
          ((||L||  =  ||outl(effect  <s,  r>)||)  and 
          (\muparrow{}isl(effect  <s,  r>)))



Date html generated: 2019_10_15-AM-11_06_14
Last ObjectModification: 2018_08_21-PM-01_58_00

Theory : general


Home Index