Nuprl Lemma : quicksort-int-length

[L:ℤ List]. (||L|| ||quicksort-int(L)|| ∈ ℤ)


Proof




Definitions occuring in Statement :  quicksort-int: quicksort-int(L) length: ||as|| list: List uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T squash: T prop: and: P ∧ Q uimplies: supposing a
Lemmas referenced :  permutation-length permutation_wf l_member_wf le_wf sorted-by_wf and_wf list_wf quicksort-int_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality applyEquality lambdaEquality setElimination rename hypothesis sqequalRule imageMemberEquality baseClosed setEquality isectElimination intEquality introduction because_Cache imageElimination productElimination equalityTransitivity equalitySymmetry independent_isectElimination

Latex:
\mforall{}[L:\mBbbZ{}  List].  (||L||  =  ||quicksort-int(L)||)



Date html generated: 2016_05_15-PM-04_29_53
Last ObjectModification: 2016_01_16-AM-11_14_09

Theory : general


Home Index