Nuprl Lemma : quicksort-int-length
∀[L:ℤ List]. (||L|| = ||quicksort-int(L)|| ∈ ℤ)
Proof
Definitions occuring in Statement : 
quicksort-int: quicksort-int(L)
, 
length: ||as||
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
and: P ∧ Q
, 
uimplies: b supposing a
Lemmas referenced : 
permutation-length, 
permutation_wf, 
l_member_wf, 
le_wf, 
sorted-by_wf, 
and_wf, 
list_wf, 
quicksort-int_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
hypothesis, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
setEquality, 
isectElimination, 
intEquality, 
introduction, 
because_Cache, 
imageElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination
Latex:
\mforall{}[L:\mBbbZ{}  List].  (||L||  =  ||quicksort-int(L)||)
Date html generated:
2016_05_15-PM-04_29_53
Last ObjectModification:
2016_01_16-AM-11_14_09
Theory : general
Home
Index