Nuprl Lemma : sorted-by_wf

[T:Type]. ∀[L:T List]. ∀[R:{x:T| (x ∈ L)}  ⟶ {x:T| (x ∈ L)}  ⟶ ℙ].  (sorted-by(R;L) ∈ ℙ)


Proof




Definitions occuring in Statement :  sorted-by: sorted-by(R;L) l_member: (x ∈ l) list: List uall: [x:A]. B[x] prop: member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  sorted-by: sorted-by(R;L) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] int_seg: {i..j-} prop: uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top less_than: a < b squash: T so_apply: x[s]
Lemmas referenced :  list_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties list-subtype l_member_wf select_wf length_wf int_seg_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality cumulativity hypothesisEquality hypothesis lambdaEquality because_Cache setElimination rename applyEquality setEquality equalityTransitivity equalitySymmetry independent_isectElimination productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination axiomEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[R:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}].    (sorted-by(R;L)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-01_46_41
Last ObjectModification: 2016_01_15-AM-08_20_11

Theory : list_1


Home Index