Nuprl Lemma : rev-zip_wf

[A,B:Type]. ∀[L1:A List]. ∀[L2:B List].  (rev-zip(L1;L2) ∈ (A × B) List)


Proof




Definitions occuring in Statement :  rev-zip: rev-zip(L1;L2) list: List uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rev-zip: rev-zip(L1;L2) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  convolution_wf list_wf cons_wf nil_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productEquality hypothesis lambdaEquality independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[L1:A  List].  \mforall{}[L2:B  List].    (rev-zip(L1;L2)  \mmember{}  (A  \mtimes{}  B)  List)



Date html generated: 2016_05_15-PM-03_48_46
Last ObjectModification: 2015_12_27-PM-01_21_56

Theory : general


Home Index