Nuprl Lemma : rev-zip_wf
∀[A,B:Type]. ∀[L1:A List]. ∀[L2:B List].  (rev-zip(L1;L2) ∈ (A × B) List)
Proof
Definitions occuring in Statement : 
rev-zip: rev-zip(L1;L2)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rev-zip: rev-zip(L1;L2)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
convolution_wf, 
list_wf, 
cons_wf, 
nil_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productEquality, 
hypothesis, 
lambdaEquality, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[L1:A  List].  \mforall{}[L2:B  List].    (rev-zip(L1;L2)  \mmember{}  (A  \mtimes{}  B)  List)
Date html generated:
2016_05_15-PM-03_48_46
Last ObjectModification:
2015_12_27-PM-01_21_56
Theory : general
Home
Index