Nuprl Lemma : sudoku-allowed_wf
∀[P:SudokuPuzzle()]. ∀[i,j:ℕ9].  (sudoku-allowed(P;i;j) ∈ {1..10-} List)
Proof
Definitions occuring in Statement : 
sudoku-allowed: sudoku-allowed(P;i;j)
, 
SudokuPuzzle: SudokuPuzzle()
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sudoku-allowed: sudoku-allowed(P;i;j)
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
SudokuPuzzle: SudokuPuzzle()
Lemmas referenced : 
board-cell_wf, 
list_wf, 
int_seg_wf, 
false_wf, 
le_wf, 
SudokuPuzzle_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
dependent_set_memberEquality, 
independent_pairFormation, 
lambdaFormation, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[P:SudokuPuzzle()].  \mforall{}[i,j:\mBbbN{}9].    (sudoku-allowed(P;i;j)  \mmember{}  \{1..10\msupminus{}\}  List)
Date html generated:
2016_05_15-PM-03_14_11
Last ObjectModification:
2015_12_27-PM-01_02_08
Theory : general
Home
Index