Nuprl Lemma : test-sq-stuff
∀L,L2:ℤ List.  ((L = L2 ∈ (ℤ List)) 
⇒ (||L|| = ||L2|| ∈ ℤ))
Proof
Definitions occuring in Statement : 
length: ||as||
, 
list: T List
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
true: True
, 
squash: ↓T
, 
prop: ℙ
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_subtype_base, 
int_subtype_base, 
list_wf, 
length_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
hypothesis, 
equalityIsType4, 
inhabitedIsType, 
hypothesisEquality, 
applyEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
independent_isectElimination, 
sqequalRule, 
universeIsType, 
natural_numberEquality, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
universeEquality, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}L,L2:\mBbbZ{}  List.    ((L  =  L2)  {}\mRightarrow{}  (||L||  =  ||L2||))
Date html generated:
2019_10_15-AM-11_34_02
Last ObjectModification:
2018_10_31-PM-06_00_36
Theory : general
Home
Index