Nuprl Lemma : test-sq-stuff

L,L2:ℤ List.  ((L L2 ∈ (ℤ List))  (||L|| ||L2|| ∈ ℤ))


Proof




Definitions occuring in Statement :  length: ||as|| list: List all: x:A. B[x] implies:  Q int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] uimplies: supposing a true: True squash: T prop: guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  list_subtype_base int_subtype_base list_wf length_wf equal_wf squash_wf true_wf istype-universe subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis equalityIsType4 inhabitedIsType hypothesisEquality applyEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination sqequalRule universeIsType natural_numberEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry instantiate universeEquality because_Cache imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}L,L2:\mBbbZ{}  List.    ((L  =  L2)  {}\mRightarrow{}  (||L||  =  ||L2||))



Date html generated: 2019_10_15-AM-11_34_02
Last ObjectModification: 2018_10_31-PM-06_00_36

Theory : general


Home Index