Nuprl Lemma : test-squash-simp
∀[B:ℤ ⟶ ℤ ⟶ ℙ]. ∀[A:ℤ ⟶ ℙ].
  (↓∃x:ℤ
     ((↓∃v:ℤ. (↓A[x] ∨ (↓A[v]))) ∧ (↓(∃u:ℤ. (↓((↓B[x;u]) ∧ (↓B[u;u])) ∨ ((↓B[u;x]) ∧ B[x;x]))) ∨ (↓∃n:ℕ. (↓4 ≤ n))))
  
⇐⇒ ↓∃x:ℤ. ((∃v:ℤ. (A[x] ∨ A[v])) ∧ ((∃u:ℤ. ((B[x;u] ∧ B[u;u]) ∨ (B[u;x] ∧ B[x;x]))) ∨ (∃n:ℕ. (4 ≤ n)))))
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
squash: ↓T
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
hint: hint(t)
, 
true: True
, 
le: A ≤ B
, 
guard: {T}
, 
cand: A c∧ B
Lemmas referenced : 
iff_wf, 
and_wf, 
le_wf, 
nat_wf, 
or_wf, 
exists_wf, 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
sqequalRule, 
lambdaEquality, 
productEquality, 
because_Cache, 
applyEquality, 
hypothesisEquality, 
natural_numberEquality, 
setElimination, 
rename, 
addLevel, 
productElimination, 
impliesFunctionality, 
imageElimination, 
unionElimination, 
dependent_pairFormation, 
inlFormation, 
imageMemberEquality, 
baseClosed, 
inrFormation, 
universeEquality, 
promote_hyp, 
independent_pairEquality, 
dependent_functionElimination, 
functionEquality, 
cumulativity, 
isect_memberEquality
Latex:
\mforall{}[B:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[A:\mBbbZ{}  {}\mrightarrow{}  \mBbbP{}].
    (\mdownarrow{}\mexists{}x:\mBbbZ{}
          ((\mdownarrow{}\mexists{}v:\mBbbZ{}.  (\mdownarrow{}A[x]  \mvee{}  (\mdownarrow{}A[v])))
          \mwedge{}  (\mdownarrow{}(\mexists{}u:\mBbbZ{}.  (\mdownarrow{}((\mdownarrow{}B[x;u])  \mwedge{}  (\mdownarrow{}B[u;u]))  \mvee{}  ((\mdownarrow{}B[u;x])  \mwedge{}  B[x;x])))  \mvee{}  (\mdownarrow{}\mexists{}n:\mBbbN{}.  (\mdownarrow{}4  \mleq{}  n))))
    \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}\mexists{}x:\mBbbZ{}
                ((\mexists{}v:\mBbbZ{}.  (A[x]  \mvee{}  A[v]))
                \mwedge{}  ((\mexists{}u:\mBbbZ{}.  ((B[x;u]  \mwedge{}  B[u;u])  \mvee{}  (B[u;x]  \mwedge{}  B[x;x])))  \mvee{}  (\mexists{}n:\mBbbN{}.  (4  \mleq{}  n)))))
Date html generated:
2016_05_15-PM-07_49_34
Last ObjectModification:
2016_01_16-AM-09_35_05
Theory : general
Home
Index