Nuprl Lemma : test-squash-simp

[B:ℤ ⟶ ℤ ⟶ ℙ]. ∀[A:ℤ ⟶ ℙ].
  (↓∃x:ℤ
     ((↓∃v:ℤ(↓A[x] ∨ (↓A[v]))) ∧ (↓(∃u:ℤ(↓((↓B[x;u]) ∧ (↓B[u;u])) ∨ ((↓B[u;x]) ∧ B[x;x]))) ∨ (↓∃n:ℕ(↓4 ≤ n))))
  ⇐⇒ ↓∃x:ℤ((∃v:ℤ(A[x] ∨ A[v])) ∧ ((∃u:ℤ((B[x;u] ∧ B[u;u]) ∨ (B[u;x] ∧ B[x;x]))) ∨ (∃n:ℕ(4 ≤ n)))))


Proof




Definitions occuring in Statement :  nat: uall: [x:A]. B[x] prop: so_apply: x[s1;s2] so_apply: x[s] le: A ≤ B exists: x:A. B[x] iff: ⇐⇒ Q squash: T or: P ∨ Q and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] or: P ∨ Q exists: x:A. B[x] so_apply: x[s1;s2] subtype_rel: A ⊆B nat: rev_implies:  Q squash: T hint: hint(t) true: True le: A ≤ B guard: {T} cand: c∧ B
Lemmas referenced :  iff_wf and_wf le_wf nat_wf or_wf exists_wf squash_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality sqequalRule lambdaEquality productEquality because_Cache applyEquality hypothesisEquality natural_numberEquality setElimination rename addLevel productElimination impliesFunctionality imageElimination unionElimination dependent_pairFormation inlFormation imageMemberEquality baseClosed inrFormation universeEquality promote_hyp independent_pairEquality dependent_functionElimination functionEquality cumulativity isect_memberEquality

Latex:
\mforall{}[B:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[A:\mBbbZ{}  {}\mrightarrow{}  \mBbbP{}].
    (\mdownarrow{}\mexists{}x:\mBbbZ{}
          ((\mdownarrow{}\mexists{}v:\mBbbZ{}.  (\mdownarrow{}A[x]  \mvee{}  (\mdownarrow{}A[v])))
          \mwedge{}  (\mdownarrow{}(\mexists{}u:\mBbbZ{}.  (\mdownarrow{}((\mdownarrow{}B[x;u])  \mwedge{}  (\mdownarrow{}B[u;u]))  \mvee{}  ((\mdownarrow{}B[u;x])  \mwedge{}  B[x;x])))  \mvee{}  (\mdownarrow{}\mexists{}n:\mBbbN{}.  (\mdownarrow{}4  \mleq{}  n))))
    \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}\mexists{}x:\mBbbZ{}
                ((\mexists{}v:\mBbbZ{}.  (A[x]  \mvee{}  A[v]))
                \mwedge{}  ((\mexists{}u:\mBbbZ{}.  ((B[x;u]  \mwedge{}  B[u;u])  \mvee{}  (B[u;x]  \mwedge{}  B[x;x])))  \mvee{}  (\mexists{}n:\mBbbN{}.  (4  \mleq{}  n)))))



Date html generated: 2016_05_15-PM-07_49_34
Last ObjectModification: 2016_01_16-AM-09_35_05

Theory : general


Home Index