Nuprl Lemma : unique-minimal_wf

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[m:T].  (unique-minimal(T;x,y.R[x;y];m) ∈ ℙ)


Proof




Definitions occuring in Statement :  unique-minimal: unique-minimal(T;x,y.R[x; y];m) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T unique-minimal: unique-minimal(T;x,y.R[x; y];m) so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] implies:  Q prop:
Lemmas referenced :  and_wf all_wf not_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis functionEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[m:T].    (unique-minimal(T;x,y.R[x;y];m)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-07_50_29
Last ObjectModification: 2015_12_27-AM-11_05_27

Theory : general


Home Index