Nuprl Lemma : valuation-val
∀[z:formula()]. ∀[v0:{a:formula()| a ⊆ z ∧ (↑pvar?(a))}  ⟶ 𝔹]. ∀[f:{f:{a:formula()| a ⊆ z}  ⟶ 𝔹| valuation(v0;z;f)} ].
  f z = extend-val(v0;f;z)
Proof
Definitions occuring in Statement : 
valuation: valuation(v0;x;f)
, 
extend-val: extend-val(v0;g;x)
, 
psub: a ⊆ b
, 
pvar?: pvar?(v)
, 
formula: formula()
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
valuation: valuation(v0;x;f)
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
uimplies: b supposing a
Lemmas referenced : 
psub_wf, 
set_wf, 
formula_wf, 
bool_wf, 
valuation_wf, 
and_wf, 
assert_wf, 
pvar?_wf, 
psub_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
sqequalHypSubstitution, 
hypothesis, 
dependent_functionElimination, 
dependent_set_memberEquality, 
hypothesisEquality, 
lemma_by_obid, 
isectElimination, 
functionEquality, 
setEquality, 
sqequalRule, 
lambdaEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
independent_isectElimination
Latex:
\mforall{}[z:formula()].  \mforall{}[v0:\{a:formula()|  a  \msubseteq{}  z  \mwedge{}  (\muparrow{}pvar?(a))\}    {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:\{f:\{a:formula()|  a  \msubseteq{}  z\}    {}\mrightarrow{}  \mBbbB{}| 
                                                                                                                                        valuation(v0;z;f)\}  ].
    f  z  =  extend-val(v0;f;z)
Date html generated:
2016_05_15-PM-07_17_20
Last ObjectModification:
2015_12_27-AM-11_29_12
Theory : general
Home
Index