Nuprl Lemma : valuation-val

[z:formula()]. ∀[v0:{a:formula()| a ⊆ z ∧ (↑pvar?(a))}  ⟶ 𝔹]. ∀[f:{f:{a:formula()| a ⊆ z}  ⟶ 𝔹valuation(v0;z;f)} ].
  extend-val(v0;f;z)


Proof




Definitions occuring in Statement :  valuation: valuation(v0;x;f) extend-val: extend-val(v0;g;x) psub: a ⊆ b pvar?: pvar?(v) formula: formula() assert: b bool: 𝔹 uall: [x:A]. B[x] and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T valuation: valuation(v0;x;f) all: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q uimplies: supposing a
Lemmas referenced :  psub_wf set_wf formula_wf bool_wf valuation_wf and_wf assert_wf pvar?_wf psub_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut setElimination thin rename sqequalHypSubstitution hypothesis dependent_functionElimination dependent_set_memberEquality hypothesisEquality lemma_by_obid isectElimination functionEquality setEquality sqequalRule lambdaEquality isect_memberEquality axiomEquality because_Cache independent_isectElimination

Latex:
\mforall{}[z:formula()].  \mforall{}[v0:\{a:formula()|  a  \msubseteq{}  z  \mwedge{}  (\muparrow{}pvar?(a))\}    {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:\{f:\{a:formula()|  a  \msubseteq{}  z\}    {}\mrightarrow{}  \mBbbB{}| 
                                                                                                                                        valuation(v0;z;f)\}  ].
    f  z  =  extend-val(v0;f;z)



Date html generated: 2016_05_15-PM-07_17_20
Last ObjectModification: 2015_12_27-AM-11_29_12

Theory : general


Home Index