Nuprl Lemma : e-isect_wf

[A,B:EType].  (e-isect(A;B) ∈ EType)


Proof




Definitions occuring in Statement :  e-isect: e-isect(A;B) e-type: EType uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T e-type: EType quotient: x,y:A//B[x; y] and: P ∧ Q e-isect: e-isect(A;B) so_lambda: λ2y.t[x; y] subtype_rel: A ⊆B prop: so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] implies:  Q ext-eq: A ≡ B cand: c∧ B isect2: T1 ⋂ T2 bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  e-type_wf quotient-member-eq ext-eq_wf ext-eq-equiv isect2_wf isect2_decomp bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution pointwiseFunctionalityForEquality introduction extract_by_obid hypothesis sqequalRule pertypeElimination productElimination thin instantiate isectElimination universeEquality lambdaEquality_alt hypothesisEquality applyEquality cumulativity inhabitedIsType equalityTransitivity equalitySymmetry independent_isectElimination dependent_functionElimination independent_functionElimination productIsType equalityIsType4 because_Cache universeIsType independent_pairFormation isect_memberEquality unionElimination equalityElimination

Latex:
\mforall{}[A,B:EType].    (e-isect(A;B)  \mmember{}  EType)



Date html generated: 2020_05_20-AM-08_24_32
Last ObjectModification: 2018_10_12-PM-00_32_14

Theory : lattices


Home Index