Nuprl Lemma : fl-filter-decomp

[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:Point(face-lattice(T;eq))].
[Q:{x:fset(T T)| ↑fset-contains-none(union-deq(T;T;eq;eq);x;x.face-lattice-constraints(x))}  ⟶ 𝔹].
  (s fl-filter(s;x.Q[x]) ∨ fl-filter(s;x.¬bQ[x]) ∈ Point(face-lattice(T;eq)))


Proof




Definitions occuring in Statement :  fl-filter: fl-filter(s;x.Q[x]) face-lattice: face-lattice(T;eq) face-lattice-constraints: face-lattice-constraints(x) lattice-join: a ∨ b lattice-point: Point(l) fset-contains-none: fset-contains-none(eq;s;x.Cs[x]) fset: fset(T) union-deq: union-deq(A;B;a;b) deq: EqDecider(T) bnot: ¬bb assert: b bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] set: {x:A| B[x]}  function: x:A ⟶ B[x] union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) fl-filter: fl-filter(s;x.Q[x])
Lemmas referenced :  deq_wf fset_wf face-lattice-constraints_wf fset-contains-none_wf union-deq_wf cal-filter-decomp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin unionEquality hypothesisEquality hypothesis sqequalRule lambdaEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:Point(face-lattice(T;eq))].
\mforall{}[Q:\{x:fset(T  +  T)|  \muparrow{}fset-contains-none(union-deq(T;T;eq;eq);x;x.face-lattice-constraints(x))\} 
        {}\mrightarrow{}  \mBbbB{}].
    (s  =  fl-filter(s;x.Q[x])  \mvee{}  fl-filter(s;x.\mneg{}\msubb{}Q[x]))



Date html generated: 2020_05_20-AM-08_52_23
Last ObjectModification: 2016_01_18-PM-07_59_45

Theory : lattices


Home Index