Nuprl Lemma : fl-filter-decomp
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:Point(face-lattice(T;eq))].
∀[Q:{x:fset(T + T)| ↑fset-contains-none(union-deq(T;T;eq;eq);x;x.face-lattice-constraints(x))}  ⟶ 𝔹].
  (s = fl-filter(s;x.Q[x]) ∨ fl-filter(s;x.¬bQ[x]) ∈ Point(face-lattice(T;eq)))
Proof
Definitions occuring in Statement : 
fl-filter: fl-filter(s;x.Q[x])
, 
face-lattice: face-lattice(T;eq)
, 
face-lattice-constraints: face-lattice-constraints(x)
, 
lattice-join: a ∨ b
, 
lattice-point: Point(l)
, 
fset-contains-none: fset-contains-none(eq;s;x.Cs[x])
, 
fset: fset(T)
, 
union-deq: union-deq(A;B;a;b)
, 
deq: EqDecider(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
fl-filter: fl-filter(s;x.Q[x])
Lemmas referenced : 
deq_wf, 
fset_wf, 
face-lattice-constraints_wf, 
fset-contains-none_wf, 
union-deq_wf, 
cal-filter-decomp
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
unionEquality, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:Point(face-lattice(T;eq))].
\mforall{}[Q:\{x:fset(T  +  T)|  \muparrow{}fset-contains-none(union-deq(T;T;eq;eq);x;x.face-lattice-constraints(x))\} 
        {}\mrightarrow{}  \mBbbB{}].
    (s  =  fl-filter(s;x.Q[x])  \mvee{}  fl-filter(s;x.\mneg{}\msubb{}Q[x]))
Date html generated:
2020_05_20-AM-08_52_23
Last ObjectModification:
2016_01_18-PM-07_59_45
Theory : lattices
Home
Index