Nuprl Lemma : free-dl-meet_wf_list

[X:Type]. ∀[as,bs:X List List].  (free-dl-meet(as;bs) ∈ List List)


Proof




Definitions occuring in Statement :  free-dl-meet: free-dl-meet(as;bs) list: List uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T free-dl-meet: free-dl-meet(as;bs) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  list_accum_wf list_wf nil_wf append_wf map_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[as,bs:X  List  List].    (free-dl-meet(as;bs)  \mmember{}  X  List  List)



Date html generated: 2020_05_20-AM-08_26_55
Last ObjectModification: 2017_01_21-PM-04_42_53

Theory : lattices


Home Index