Nuprl Lemma : free-dma-lift-id
∀T:Type. ∀eq:EqDecider(T).
  (free-dma-lift(T;eq;free-DeMorgan-algebra(T;eq);free-dml-deq(T;eq);λi.<i>)
  = (λx.x)
  ∈ dma-hom(free-DeMorgan-algebra(T;eq);free-DeMorgan-algebra(T;eq)))
Proof
Definitions occuring in Statement : 
free-dma-lift: free-dma-lift(T;eq;dm;eq2;f), 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
dma-hom: dma-hom(dma1;dma2), 
dminc: <i>, 
free-dml-deq: free-dml-deq(T;eq), 
deq: EqDecider(T), 
all: ∀x:A. B[x], 
lambda: λx.A[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
deq: EqDecider(T), 
lattice-point: Point(l), 
record-select: r.x, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
free-dist-lattice: free-dist-lattice(T; eq), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
btrue: tt, 
bool: 𝔹, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
assert: ↑b, 
rev_implies: P ⇐ Q, 
uimplies: b supposing a
Lemmas referenced : 
free-dma-lift-unique, 
free-DeMorgan-algebra_wf, 
free-dml-deq_wf, 
dminc_wf, 
id-is-dma-hom, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
because_Cache, 
independent_isectElimination, 
universeEquality
Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).
    (free-dma-lift(T;eq;free-DeMorgan-algebra(T;eq);free-dml-deq(T;eq);\mlambda{}i.<i>)  =  (\mlambda{}x.x))
Date html generated:
2020_05_20-AM-08_57_21
Last ObjectModification:
2018_05_20-PM-10_14_22
Theory : lattices
Home
Index