Nuprl Lemma : free-dma-lift-unique

[T:Type]. ∀[eq:EqDecider(T)]. ∀[dm:DeMorganAlgebra]. ∀[eq2:EqDecider(Point(dm))]. ∀[f:T ⟶ Point(dm)].
[g:dma-hom(free-DeMorgan-algebra(T;eq);dm)].
  free-dma-lift(T;eq;dm;eq2;f) g ∈ dma-hom(free-DeMorgan-algebra(T;eq);dm) 
  supposing ∀i:T. ((g <i>(f i) ∈ Point(dm))


Proof




Definitions occuring in Statement :  free-dma-lift: free-dma-lift(T;eq;dm;eq2;f) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) dma-hom: dma-hom(dma1;dma2) DeMorgan-algebra: DeMorganAlgebra dminc: <i> lattice-point: Point(l) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  btrue: tt mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice free-dist-lattice: free-dist-lattice(T; eq) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) bfalse: ff eq_atom: =a y ifthenelse: if then else fi  record-update: r[x := v] mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) record-select: r.x lattice-point: Point(l) lattice-hom: Hom(l1;l2) bounded-lattice-hom: Hom(l1;l2) dma-hom: dma-hom(dma1;dma2) so_apply: x[s] guard: {T} and: P ∧ Q prop: so_lambda: λ2x.t[x] DeMorgan-algebra: DeMorganAlgebra subtype_rel: A ⊆B all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] squash: T true: True iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  istype-universe DeMorgan-algebra_wf deq_wf free-DeMorgan-algebra_wf dma-hom_wf dminc_wf DeMorgan-algebra-axioms_wf lattice-join_wf lattice-meet_wf equal_wf bounded-lattice-axioms_wf bounded-lattice-structure_wf subtype_rel_transitivity DeMorgan-algebra-structure-subtype bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf DeMorgan-algebra-structure_wf subtype_rel_set lattice-point_wf free-DeMorgan-algebra-hom-unique free-dma-lift_wf squash_wf true_wf free-dma-lift-inc trivial-equal subtype_rel_self iff_weakening_equal
Rules used in proof :  universeEquality dependent_functionElimination inhabitedIsType isectIsTypeImplies axiomEquality isect_memberEquality_alt rename setElimination because_Cache isectEquality independent_isectElimination cumulativity productEquality lambdaEquality_alt instantiate applyEquality thin isectElimination sqequalHypSubstitution extract_by_obid equalityIstype hypothesisEquality universeIsType functionIsType sqequalRule hypothesis cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution equalityTransitivity equalitySymmetry lambdaFormation_alt imageElimination natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[dm:DeMorganAlgebra].  \mforall{}[eq2:EqDecider(Point(dm))].
\mforall{}[f:T  {}\mrightarrow{}  Point(dm)].  \mforall{}[g:dma-hom(free-DeMorgan-algebra(T;eq);dm)].
    free-dma-lift(T;eq;dm;eq2;f)  =  g  supposing  \mforall{}i:T.  ((g  <i>)  =  (f  i))



Date html generated: 2020_05_20-AM-08_57_13
Last ObjectModification: 2020_02_04-PM-02_03_33

Theory : lattices


Home Index