Nuprl Lemma : free-dma-lift-unique
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[dm:DeMorganAlgebra]. ∀[eq2:EqDecider(Point(dm))]. ∀[f:T ⟶ Point(dm)].
∀[g:dma-hom(free-DeMorgan-algebra(T;eq);dm)].
  free-dma-lift(T;eq;dm;eq2;f) = g ∈ dma-hom(free-DeMorgan-algebra(T;eq);dm) 
  supposing ∀i:T. ((g <i>) = (f i) ∈ Point(dm))
Proof
Definitions occuring in Statement : 
free-dma-lift: free-dma-lift(T;eq;dm;eq2;f)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
dma-hom: dma-hom(dma1;dma2)
, 
DeMorgan-algebra: DeMorganAlgebra
, 
dminc: <i>
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
btrue: tt
, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
bfalse: ff
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
record-update: r[x := v]
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
record-select: r.x
, 
lattice-point: Point(l)
, 
lattice-hom: Hom(l1;l2)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
dma-hom: dma-hom(dma1;dma2)
, 
so_apply: x[s]
, 
guard: {T}
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
DeMorgan-algebra: DeMorganAlgebra
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
istype-universe, 
DeMorgan-algebra_wf, 
deq_wf, 
free-DeMorgan-algebra_wf, 
dma-hom_wf, 
dminc_wf, 
DeMorgan-algebra-axioms_wf, 
lattice-join_wf, 
lattice-meet_wf, 
equal_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure_wf, 
subtype_rel_transitivity, 
DeMorgan-algebra-structure-subtype, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
DeMorgan-algebra-structure_wf, 
subtype_rel_set, 
lattice-point_wf, 
free-DeMorgan-algebra-hom-unique, 
free-dma-lift_wf, 
squash_wf, 
true_wf, 
free-dma-lift-inc, 
trivial-equal, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
universeEquality, 
dependent_functionElimination, 
inhabitedIsType, 
isectIsTypeImplies, 
axiomEquality, 
isect_memberEquality_alt, 
rename, 
setElimination, 
because_Cache, 
isectEquality, 
independent_isectElimination, 
cumulativity, 
productEquality, 
lambdaEquality_alt, 
instantiate, 
applyEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
equalityIstype, 
hypothesisEquality, 
universeIsType, 
functionIsType, 
sqequalRule, 
hypothesis, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation_alt, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[dm:DeMorganAlgebra].  \mforall{}[eq2:EqDecider(Point(dm))].
\mforall{}[f:T  {}\mrightarrow{}  Point(dm)].  \mforall{}[g:dma-hom(free-DeMorgan-algebra(T;eq);dm)].
    free-dma-lift(T;eq;dm;eq2;f)  =  g  supposing  \mforall{}i:T.  ((g  <i>)  =  (f  i))
Date html generated:
2020_05_20-AM-08_57_13
Last ObjectModification:
2020_02_04-PM-02_03_33
Theory : lattices
Home
Index