Nuprl Lemma : dma-hom_wf

[dma1:DeMorganAlgebra]. ∀dma2:DeMorganAlgebra. (dma-hom(dma1;dma2) ∈ Type)


Proof




Definitions occuring in Statement :  dma-hom: dma-hom(dma1;dma2) DeMorgan-algebra: DeMorganAlgebra uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] dma-hom: dma-hom(dma1;dma2) subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] prop: and: P ∧ Q guard: {T} uimplies: supposing a so_apply: x[s] bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2)
Lemmas referenced :  bounded-lattice-hom_wf subtype_rel_set DeMorgan-algebra-structure_wf bounded-lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-point_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dma-neg_wf DeMorgan-algebra_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalRule setEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality instantiate hypothesis lambdaEquality productEquality independent_isectElimination cumulativity universeEquality because_Cache setElimination rename dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[dma1:DeMorganAlgebra].  \mforall{}dma2:DeMorganAlgebra.  (dma-hom(dma1;dma2)  \mmember{}  Type)



Date html generated: 2020_05_20-AM-08_56_04
Last ObjectModification: 2015_12_28-PM-01_55_37

Theory : lattices


Home Index