Nuprl Lemma : dma-hom_wf
∀[dma1:DeMorganAlgebra]. ∀dma2:DeMorganAlgebra. (dma-hom(dma1;dma2) ∈ Type)
Proof
Definitions occuring in Statement : 
dma-hom: dma-hom(dma1;dma2)
, 
DeMorgan-algebra: DeMorganAlgebra
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
dma-hom: dma-hom(dma1;dma2)
, 
subtype_rel: A ⊆r B
, 
DeMorgan-algebra: DeMorganAlgebra
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
Lemmas referenced : 
bounded-lattice-hom_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
bounded-lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
lattice-structure_wf, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-point_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
dma-neg_wf, 
DeMorgan-algebra_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalRule, 
setEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
instantiate, 
hypothesis, 
lambdaEquality, 
productEquality, 
independent_isectElimination, 
cumulativity, 
universeEquality, 
because_Cache, 
setElimination, 
rename, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[dma1:DeMorganAlgebra].  \mforall{}dma2:DeMorganAlgebra.  (dma-hom(dma1;dma2)  \mmember{}  Type)
Date html generated:
2020_05_20-AM-08_56_04
Last ObjectModification:
2015_12_28-PM-01_55_37
Theory : lattices
Home
Index