Nuprl Lemma : free-DeMorgan-algebra-hom-unique
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[dm:DeMorganAlgebra]. ∀[eq2:EqDecider(Point(dm))].
  ∀f:T ⟶ Point(dm)
    ∀[g,h:dma-hom(free-DeMorgan-algebra(T;eq);dm)].
      g = h ∈ dma-hom(free-DeMorgan-algebra(T;eq);dm) supposing ∀i:T. ((g <i>) = (h <i>) ∈ Point(dm))
Proof
Definitions occuring in Statement : 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
dma-hom: dma-hom(dma1;dma2)
, 
DeMorgan-algebra: DeMorganAlgebra
, 
dminc: <i>
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
btrue: tt
, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
bfalse: ff
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
record-update: r[x := v]
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
record-select: r.x
, 
lattice-point: Point(l)
, 
lattice-hom: Hom(l1;l2)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
dma-hom: dma-hom(dma1;dma2)
, 
so_apply: x[s]
, 
guard: {T}
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
DeMorgan-algebra: DeMorganAlgebra
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
dmopp: <1-i>
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
squash: ↓T
, 
dminc: <i>
, 
top: Top
, 
cons: [a / b]
, 
fset-singleton: {x}
, 
lattice-1: 1
, 
it: ⋅
, 
nil: []
, 
empty-fset: {}
, 
lattice-0: 0
, 
l-union: as ⋃ bs
, 
fset-union: x ⋃ y
, 
fset-ac-lub: fset-ac-lub(eq;ac1;ac2)
, 
lattice-join: a ∨ b
, 
list_accum: list_accum, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_ind: list_ind, 
reduce: reduce(f;k;as)
, 
filter: filter(P;l)
, 
fset-filter: {x ∈ s | P[x]}
, 
fset-minimals: fset-minimals(x,y.less[x; y]; s)
, 
fset-ac-glb: fset-ac-glb(eq;ac1;ac2)
, 
lattice-meet: a ∧ b
Lemmas referenced : 
istype-universe, 
DeMorgan-algebra_wf, 
deq_wf, 
free-DeMorgan-algebra_wf, 
dma-hom_wf, 
dminc_wf, 
DeMorgan-algebra-axioms_wf, 
lattice-join_wf, 
lattice-meet_wf, 
equal_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure_wf, 
subtype_rel_transitivity, 
DeMorgan-algebra-structure-subtype, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
DeMorgan-algebra-structure_wf, 
subtype_rel_set, 
lattice-point_wf, 
DeMorgan-algebra-subtype, 
union-deq_wf, 
free-dist-lattice-hom-unique2, 
free-dma-hom-is-lattice-hom, 
iff_weakening_equal, 
subtype_rel_self, 
trivial-equal, 
true_wf, 
squash_wf, 
dma-neg_wf, 
free-dma-point-subtype, 
dm-neg-inc, 
free-dma-neg, 
istype-void
Rules used in proof : 
universeEquality, 
functionIsTypeImplies, 
dependent_functionElimination, 
inhabitedIsType, 
isectIsTypeImplies, 
axiomEquality, 
isect_memberEquality_alt, 
rename, 
setElimination, 
because_Cache, 
isectEquality, 
independent_isectElimination, 
cumulativity, 
productEquality, 
lambdaEquality_alt, 
instantiate, 
equalityIstype, 
universeIsType, 
functionIsType, 
sqequalRule, 
applyEquality, 
hypothesis, 
hypothesisEquality, 
unionEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
lambdaFormation_alt, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
hyp_replacement, 
equalityTransitivity, 
equalitySymmetry, 
unionIsType, 
independent_functionElimination, 
productElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
imageElimination, 
unionElimination, 
voidElimination, 
dependent_set_memberEquality_alt, 
isectIsType
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[dm:DeMorganAlgebra].  \mforall{}[eq2:EqDecider(Point(dm))].
    \mforall{}f:T  {}\mrightarrow{}  Point(dm)
        \mforall{}[g,h:dma-hom(free-DeMorgan-algebra(T;eq);dm)].    g  =  h  supposing  \mforall{}i:T.  ((g  <i>)  =  (h  <i>))
Date html generated:
2020_05_20-AM-08_57_08
Last ObjectModification:
2020_02_05-AM-08_06_34
Theory : lattices
Home
Index