Nuprl Lemma : free-DeMorgan-algebra-hom-unique

[T:Type]. ∀[eq:EqDecider(T)]. ∀[dm:DeMorganAlgebra]. ∀[eq2:EqDecider(Point(dm))].
  ∀f:T ⟶ Point(dm)
    ∀[g,h:dma-hom(free-DeMorgan-algebra(T;eq);dm)].
      h ∈ dma-hom(free-DeMorgan-algebra(T;eq);dm) supposing ∀i:T. ((g <i>(h <i>) ∈ Point(dm))


Proof




Definitions occuring in Statement :  free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) dma-hom: dma-hom(dma1;dma2) DeMorgan-algebra: DeMorganAlgebra dminc: <i> lattice-point: Point(l) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  btrue: tt mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice free-dist-lattice: free-dist-lattice(T; eq) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) bfalse: ff eq_atom: =a y ifthenelse: if then else fi  record-update: r[x := v] mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) record-select: r.x lattice-point: Point(l) lattice-hom: Hom(l1;l2) bounded-lattice-hom: Hom(l1;l2) dma-hom: dma-hom(dma1;dma2) so_apply: x[s] guard: {T} and: P ∧ Q prop: so_lambda: λ2x.t[x] DeMorgan-algebra: DeMorganAlgebra subtype_rel: A ⊆B uimplies: supposing a all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dmopp: <1-i> implies:  Q rev_implies:  Q iff: ⇐⇒ Q true: True squash: T dminc: <i> top: Top cons: [a b] fset-singleton: {x} lattice-1: 1 it: nil: [] empty-fset: {} lattice-0: 0 l-union: as ⋃ bs fset-union: x ⋃ y fset-ac-lub: fset-ac-lub(eq;ac1;ac2) lattice-join: a ∨ b list_accum: list_accum f-union: f-union(domeq;rngeq;s;x.g[x]) list_ind: list_ind reduce: reduce(f;k;as) filter: filter(P;l) fset-filter: {x ∈ P[x]} fset-minimals: fset-minimals(x,y.less[x; y]; s) fset-ac-glb: fset-ac-glb(eq;ac1;ac2) lattice-meet: a ∧ b
Lemmas referenced :  istype-universe DeMorgan-algebra_wf deq_wf free-DeMorgan-algebra_wf dma-hom_wf dminc_wf DeMorgan-algebra-axioms_wf lattice-join_wf lattice-meet_wf equal_wf bounded-lattice-axioms_wf bounded-lattice-structure_wf subtype_rel_transitivity DeMorgan-algebra-structure-subtype bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf DeMorgan-algebra-structure_wf subtype_rel_set lattice-point_wf DeMorgan-algebra-subtype union-deq_wf free-dist-lattice-hom-unique2 free-dma-hom-is-lattice-hom iff_weakening_equal subtype_rel_self trivial-equal true_wf squash_wf dma-neg_wf free-dma-point-subtype dm-neg-inc free-dma-neg istype-void
Rules used in proof :  universeEquality functionIsTypeImplies dependent_functionElimination inhabitedIsType isectIsTypeImplies axiomEquality isect_memberEquality_alt rename setElimination because_Cache isectEquality independent_isectElimination cumulativity productEquality lambdaEquality_alt instantiate equalityIstype universeIsType functionIsType sqequalRule applyEquality hypothesis hypothesisEquality unionEquality thin isectElimination sqequalHypSubstitution extract_by_obid lambdaFormation_alt cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution hyp_replacement equalityTransitivity equalitySymmetry unionIsType independent_functionElimination productElimination baseClosed imageMemberEquality natural_numberEquality imageElimination unionElimination voidElimination dependent_set_memberEquality_alt isectIsType

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[dm:DeMorganAlgebra].  \mforall{}[eq2:EqDecider(Point(dm))].
    \mforall{}f:T  {}\mrightarrow{}  Point(dm)
        \mforall{}[g,h:dma-hom(free-DeMorgan-algebra(T;eq);dm)].    g  =  h  supposing  \mforall{}i:T.  ((g  <i>)  =  (h  <i>))



Date html generated: 2020_05_20-AM-08_57_08
Last ObjectModification: 2020_02_05-AM-08_06_34

Theory : lattices


Home Index