Nuprl Lemma : free-dma-point-subtype
∀[T:Type]. ∀[eq:EqDecider(T)].  (Point(free-DeMorgan-lattice(T;eq)) ⊆r Point(free-DeMorgan-algebra(T;eq)))
Proof
Definitions occuring in Statement : 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
Lemmas referenced : 
free-dma-point, 
subtype_rel_self, 
lattice-point_wf, 
free-DeMorgan-lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalTransitivity, 
computationStep, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
instantiate, 
lambdaEquality, 
productEquality, 
universeEquality, 
because_Cache, 
independent_isectElimination, 
axiomEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].
    (Point(free-DeMorgan-lattice(T;eq))  \msubseteq{}r  Point(free-DeMorgan-algebra(T;eq)))
Date html generated:
2020_05_20-AM-08_56_27
Last ObjectModification:
2015_12_28-PM-01_55_16
Theory : lattices
Home
Index