Nuprl Lemma : lattice-equiv_wf

[l:GeneralBoundedLatticeStructure]. ∀[a,b:Point(l)].  (a ≡ b ∈ ℙ)


Proof




Definitions occuring in Statement :  lattice-equiv: a ≡ b general-bounded-lattice-structure: GeneralBoundedLatticeStructure lattice-point: Point(l) uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T lattice-equiv: a ≡ b general-bounded-lattice-structure: GeneralBoundedLatticeStructure record+: record+ record-select: r.x subtype_rel: A ⊆B eq_atom: =a y ifthenelse: if then else fi  btrue: tt guard: {T} prop: lattice-point: Point(l) uimplies: supposing a
Lemmas referenced :  subtype_rel_self lattice-point_wf bounded-lattice-structure-subtype general-bounded-lattice-structure-subtype subtype_rel_transitivity general-bounded-lattice-structure_wf bounded-lattice-structure_wf lattice-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution dependentIntersectionElimination dependentIntersectionEqElimination thin hypothesis applyEquality tokenEquality instantiate lemma_by_obid isectElimination universeEquality functionEquality equalityTransitivity equalitySymmetry lambdaEquality cumulativity hypothesisEquality because_Cache axiomEquality independent_isectElimination isect_memberEquality

Latex:
\mforall{}[l:GeneralBoundedLatticeStructure].  \mforall{}[a,b:Point(l)].    (a  \mequiv{}  b  \mmember{}  \mBbbP{})



Date html generated: 2020_05_20-AM-08_57_57
Last ObjectModification: 2015_12_28-PM-01_54_48

Theory : lattices


Home Index