Nuprl Lemma : lattice-equiv_wf
∀[l:GeneralBoundedLatticeStructure]. ∀[a,b:Point(l)].  (a ≡ b ∈ ℙ)
Proof
Definitions occuring in Statement : 
lattice-equiv: a ≡ b
, 
general-bounded-lattice-structure: GeneralBoundedLatticeStructure
, 
lattice-point: Point(l)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
lattice-equiv: a ≡ b
, 
general-bounded-lattice-structure: GeneralBoundedLatticeStructure
, 
record+: record+, 
record-select: r.x
, 
subtype_rel: A ⊆r B
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
guard: {T}
, 
prop: ℙ
, 
lattice-point: Point(l)
, 
uimplies: b supposing a
Lemmas referenced : 
subtype_rel_self, 
lattice-point_wf, 
bounded-lattice-structure-subtype, 
general-bounded-lattice-structure-subtype, 
subtype_rel_transitivity, 
general-bounded-lattice-structure_wf, 
bounded-lattice-structure_wf, 
lattice-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
dependentIntersectionElimination, 
dependentIntersectionEqElimination, 
thin, 
hypothesis, 
applyEquality, 
tokenEquality, 
instantiate, 
lemma_by_obid, 
isectElimination, 
universeEquality, 
functionEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
axiomEquality, 
independent_isectElimination, 
isect_memberEquality
Latex:
\mforall{}[l:GeneralBoundedLatticeStructure].  \mforall{}[a,b:Point(l)].    (a  \mequiv{}  b  \mmember{}  \mBbbP{})
Date html generated:
2020_05_20-AM-08_57_57
Last ObjectModification:
2015_12_28-PM-01_54_48
Theory : lattices
Home
Index